
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE
http://cjtcs.cs.uchicago.edu/

Almost all decision trees do not allow
significant quantum speed-up

Ashley Montanaro∗

October 29, 2012

Abstract: We show that, for any d, all but a doubly exponentially small fraction of decision
trees of depth at most d require Ω(d) quantum queries to be computed with bounded error. In
other words, most efficient classical algorithms in the query complexity model do not admit
a significant quantum speed-up. The proof is based on showing that, with high probability,
the average sensitivity of a random decision tree is high.

Key words and phrases: quantum query complexity, decision trees

1 Introduction

Many of the most important examples of quantum algorithms which outperform classical algorithms
operate in the query complexity model, where the quantity of interest is the number of queries to the input
required to compute some function [4]. Can most classical query algorithms be significantly accelerated
by a quantum computer? In one sense, the answer is a resounding no. It was shown by Ambainis in 1999
that almost all boolean functions on n bits require n/4−O(

√
n logn) quantum queries to be computed

with bounded error [2]; using different techniques, Ambainis et al have very recently improved this bound
to n/2−o(n) [3].

However, random boolean functions are arguably somewhat uninteresting in general in that they are
hard both for classical and quantum algorithms to compute. One can interpret the result of [2] as saying
that there are too many boolean functions, and too few efficient algorithms, whether classical or quantum.
Perhaps a more interesting question is whether most functions with efficient classical algorithms in the
query model – i.e. short decision trees – could be computed significantly more quickly on a quantum
computer than is possible classically. In this note we show that this is also not the case.

∗Supported by an EPSRC Postdoctoral Research Fellowship.

Ashley Montanaro
Licensed under a Creative Commons Attribution License

http://dx.doi.org/10.4086/cjtcs
http://cjtcs.cs.uchicago.edu/
http://creativecommons.org/licenses/by/3.0/

ASHLEY MONTANARO

We first need to define the model of decision trees which we will use (see [4] for further background).
A (boolean) decision tree T is a rooted binary tree where each internal vertex has exactly two children.
Such trees are called full; only full binary trees will be considered in this paper. Each vertex is labelled
with a variable xi, 1≤ i≤ n, and each leaf is labelled with 0 or 1, corresponding to the output of the tree.
Each edge from a node labelled with xi to its children is labelled with 0 or 1, corresponding to the value
of xi. T computes a boolean function T : {0,1}n→{0,1} in the obvious way: starting with the root, the
variable labelling each vertex is queried, and dependent on whether the answer is 0 or 1 the left or right
subtree is evaluated. When a leaf is reached, the tree outputs the label of that leaf. The depth of a vertex
is defined as follows: the root has depth 0, and the depth of any other vertex is equal to the depth of its
parent, plus 1. The depth of T is the largest depth of any vertex, i.e. the worst-case number of queries
made on any input.

Following [7], we will consider the uniform model of random decision trees. In this model, we obtain
a random depth d decision tree T on n≥ d variables simply by picking T uniformly at random from the
set of all non-redundant decision trees of depth at most d on n variables. A decision tree is said to be
non-redundant if no variable occurs more than once on any path from the root to a leaf. Observe that
choosing a boolean function by picking a tree uniformly at random does not pick the corresponding
function itself uniformly at random from the set of all functions with decision trees of depth d, as
many different decision trees can represent the same function, and some functions may have more trees
representing them than others. Also observe that the internal structure of a uniformly random decision
tree T and the values assigned to its leaves are independent. In other words, a random decision tree T of
depth at most d on n variables can be obtained by a two-stage process: first, pick the structure and labels
of the internal vertices of T uniformly at random from the set of all decision trees of depth at most d on n
variables, then assign 0 or 1 to the leaves of T uniformly at random.

One could also consider an alternative model of random decision trees, known as the complete
model [7]. In this model, T ’s structure is always that of a complete binary tree of depth d. We randomly
assign variables to T ’s internal vertices, consistent with T being non-redundant, and assign 0 or 1 to T ’s
leaves uniformly at random. In the present work we concentrate on the uniform model, which seems to be
the most natural way of producing a random decision tree, as it is precisely the model which puts equal
weight on every decision tree of depth at most d. However, our results easily extend to the complete
model (indeed, the proofs are somewhat simpler).

We can now state our main result.

Theorem 1. Let T be a random depth d decision tree on n variables. Then there exists a universal
constant α > 0 such that Pr[Q2(f)< αd]≤ 2−Ω(2d/3).

In the above theorem, Q2(f) is the bounded-error quantum query complexity of f [4], i.e. the smallest
number of quantum queries required to compute f with worst-case success probability at least 2/3.
Observe that the concentration bound obtained is doubly exponentially small in d. This result thus implies
that the vast majority of efficient classical algorithms in the query complexity model do not admit a
significant quantum speed-up.

The counting technique used by Ambainis [1] to prove that most boolean functions do not have
query-efficient quantum algorithms does not seem to suffice to prove Theorem 1. Indeed, Ambainis
showed that there are at most 2O(n2d+3d) boolean functions on n bits that can be computed by quantum

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2

http://dx.doi.org/10.4086/cjtcs

ALMOST ALL DECISION TREES DO NOT ALLOW SIGNIFICANT QUANTUM SPEED-UP

algorithms making d queries. However, there can be nΘ(2d) decision trees of depth d. Thus this argument
does not disallow, for example, the possibility that random decision trees of depth d = O(log2 n) could be
evaluated using O(logn) quantum queries.

We therefore take another approach to proving the above theorem, by giving a lower bound on
the average sensitivity (also known as total influence) of random decision trees. This quantity is
mathematically tractable and is known to lower bound quantum query complexity [10].

2 Proof of Theorem 1

The average sensitivity of a boolean function f : {0,1}n→{0,1} is defined as

s̄(f) =
1
2n ∑

x∈{0,1}n

n

∑
i=1
| f (x)− f (xi)|,

where xi is the n-bit string obtained by flipping the i’th bit of x. Up to normalisation, s̄(f) thus counts the
number of neighbours x, y such that f (x) 6= f (y). Average sensitivity gives the following lower bound on
quantum query complexity.

Theorem 2 (Shi [10], see [11] for the version here). Assume that f : {0,1}n→{0,1} can be computed
by a quantum algorithm making q queries and with worst-case failure probability ε ≤ 1/2. Then
q≥ 1

2(1−2ε)2s̄(f).

Our goal will now be to upper bound the probability that the average sensitivity of a random decision
tree is low. To do so, we will use the following powerful measure concentration result.

Theorem 3 (See e.g. [9] or [6, Corollary 5.2]). Fix η > 0 and assume that g : {0,1}n → R satisfies
|g(x)− g(y)| ≤ η for all x,y ∈ {0,1}n such that d(x,y) = 1, where d(x,y) is the Hamming distance
between x and y. Let x ∈ {0,1}n be picked uniformly at random. Then

Pr
x
[g(x)< Ez[g(z)]−δ]≤ e−2δ 2/(nη2).

We first calculate the expected average sensitivity of random decision trees. As discussed previously,
we will choose a uniformly random decision tree by first choosing the structure of the tree, then choosing
assignments to the leaves uniformly at random. So fix a decision tree T on n variables and let L be the set
of leaves of T , setting L := |L|. Let Tz : {0,1}n→{0,1} be the boolean function obtained by assigning
z ∈ {0,1}L to the leaves of T ; we will eventually apply Theorem 3 to the function g : {0,1}L→R defined
by g(z) = s̄(Tz). For any leaf `, let d(`) be the depth of `.

Lemma 4.
Ez∈{0,1}L [s̄(Tz)] =

1
2 ∑
`∈L

d(`)2−d(`).

Proof. From the definition of g,

Ez∈{0,1}L [s̄(Tz)] =
1
2n ∑

x∈{0,1}n

n

∑
i=1

Ez∈{0,1}L [|Tz(x)−Tz(xi)|].

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 3

http://dx.doi.org/10.4086/cjtcs

ASHLEY MONTANARO

Now observe that for each i, if T queries the i’th bit on input x, Ez∈{0,1}L [|Tz(x)−Tz(xi)|] = 1
2 . Otherwise,

Ez∈{0,1}L [|Tz(x)−Tz(xi)|] = 0. So we obtain

Ez∈{0,1}L [s̄(Tz)] =
1

2n+1 ∑
x∈{0,1}n

|{i : T queries i on x}|= 1
2
Ex∈{0,1}n [path length on input x].

As each query to the input gives 0 or 1 with equal probability on a random input x, the probability of
ending up at a given leaf ` on a random input is just 2−d(`). The claim follows.

We can also bound η = maxd(w,z)=1 |s̄(Tw)− s̄(Tz)| as follows.

Lemma 5. Let w,z ∈ {0,1}L satisfy d(w,z) = 1. Then

|s̄(Tw)− s̄(Tz)| ≤max
`∈L

d(`)21−d(`).

Proof. The idea is essentially the same as the proof of Lemma 4. We have

s̄(Tw)− s̄(Tz) =
1
2n ∑

x∈{0,1}n

n

∑
i=1

(
|Tw(x)−Tw(xi)|− |Tz(x)−Tz(xi)|

)
.

As w and z only differ on one leaf `, |Tw(x)−Tw(xi)|= |Tz(x)−Tz(xi)| unless precisely one of x and xi

leads to `. Thus

|s̄(Tw)− s̄(Tz)| ≤
1
2n ∑

x,x→`
∑

i,xi9`

1+
1
2n ∑

x,x9`
∑

i,xi→`

1 =
1

2n−1 ∑
x,x→`

|{i : xi 9 `}|,

where we use the notation x→ ` and x 9 ` to mean that evaluation of the tree does or does not end up in
leaf ` on input x, respectively. For each x, there can only be at most d(`) variables i such that x→ ` and
xi 9 `. Therefore

|s̄(Tw)− s̄(Tz)| ≤ 2d(`) Pr
x∈{0,1}n

[x→ `] = d(`)21−d(`).

Note that this bound is quite weak when there exists a leaf ` in T of low depth. Nevertheless, its
dependence on d(`) is essentially tight: consider the tree T that computes

T (x) = αx1 +(1− x1)x2x3 . . .xn,

for α ∈ {0,1}. Then changing α from 0 to 1 changes s̄(T) from close to 0 to close to 1. Luckily, it turns
out that in fact min`∈L d(`) will be high with high probability; roughly speaking, a random tree is unlikely
to have any low-hanging fruit. We formalise this as the following lemma, which we prove at the end.

Lemma 6. Let T be picked uniformly at random from the set of decision trees of depth at most d. Then,
for any h≤ d− log2 d−2, the probability that T has a leaf with depth at most h is at most 21−2d−h−2

.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 4

http://dx.doi.org/10.4086/cjtcs

ALMOST ALL DECISION TREES DO NOT ALLOW SIGNIFICANT QUANTUM SPEED-UP

Assume that d(`)≥ 2d/3 for all ` ∈ L. Then, using Theorem 3 and Lemma 5, we have

Pr
z
[s̄(Tz)< E[s̄(Tz)]−δ]≤ e−2δ 2/(Lη2) ≤ e−(9/8)2d/3δ 2/d2

.

Also, if d(`)≥ 2d/3 for all ` ∈ L, by Lemma 4 E[s̄(Tz)]≥ d/3. Thus

Pr
z
[s̄(Tz)< (1− γ)d/3]≤ e−2d/3−3γ2

.

Now let T be picked uniformly at random from the set of decision trees of depth at most d. Taking
h = 2d/3 in Lemma 6 and using a union bound over the two bad events that min`∈L d(`) ≤ 2d/3 and
s̄(Tz)< (1− γ)d/3, we obtain the overall bound that

Pr
T
[s̄(T)< (1− γ)d/3]≤ 21−2d/3−2

+ e−2d/3−3γ2
,

which is clearly of order 2−Ω(2d/3γ2). Taking ε = 1/3 in Theorem 2 we have Q2(T) ≥ s̄(T)/18, and
choosing γ to be an arbitrary constant such that 0 < γ < 1 completes the proof of Theorem 1.

Observe that, if one is content with looser concentration bounds, it is possible to show that PrT [s̄(T)<
d/2−O(logd)] = 2−Ω(d), by taking h = d−O(logd) in Lemma 6.

2.1 Remaining lemmas

In order to prove Lemma 6 we will need a simple bound on the number of low depth binary trees.

Fact 2.1. Let Nd be the number of binary trees of depth at most d. For d ≥ 1, Nd = N2
d−1 +1, and N0 = 1.

Thus Nd ≥ 22d−1
for all d ≥ 1.

Proof. Every binary tree of depth at most d either consists of a single leaf or of two independent binary
trees of depth at most d−1; the claimed recurrence for Nd is immediate. The second part easily follows
from this recurrence by induction.

Lemma 7. Let T be picked uniformly at random from the set of binary trees of depth at most d. Then,
for any h≤ d− log2 d−2, the probability that T has a leaf with depth at most h is at most 21−2d−h−2

.

Proof. Using a union bound and Fact 2.1, the probability that T has a leaf with depth at most h is upper
bounded by

h

∑
k=0

2k Pr[a vertex at depth k is a leaf] =
h

∑
k=0

2k

Nd−k
≤

h

∑
k=0

2k−2d−k−1 ≤
h

∑
k=0

2−2d−k−2 ≤ 21−2d−h−2
.

Picking a decision tree T uniformly at random from the set of decision trees of depth at most d is
similar to, but not quite the same as, making T ’s structure a uniformly random binary tree of depth at
most d, then assigning variables to the internal vertices at random, and values to the leaves at random.
However, the above conclusions also apply to uniformly random decision trees (in other words, Lemma
7 implies Lemma 6). The reason is that choosing a tree from a distribution where trees with different
variables assigned to the internal vertices are considered to be distinct can only decrease the probability
that an arbitrary vertex at a given depth is a leaf.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 5

http://dx.doi.org/10.4086/cjtcs

ASHLEY MONTANARO

3 Conclusions

We have shown that, in the query complexity model, most short decision trees do not admit a quantum
speed-up greater than a constant factor. An interesting open question is to determine the extent of the
quantum speed-up which is possible. It is known that, for all boolean functions f : {0,1}n → {0,1},
Q2(f)≤ n/2+O(

√
n) [5]. Could it be the case that all decision trees of depth d can be computed with

bounded error using d/2+O(
√

d) quantum queries? Indeed, one can show that a non-zero speed-up is
possible for essentially all decision trees: if f has a decision tree of depth d ≥ 2, then Q2(f)≤ d−1. The
reason is that every boolean function on 2 bits can be computed with success probability 9/10 using only
one quantum query [8], so the quantum algorithm can simply follow the classical decision tree, replacing
the last two classical queries with one quantum query.

Acknowledgements

I would like to thank Tony Short for his interpretation of Lemma 6, and Ronald de Wolf and an anonymous
referee for helpful comments on a previous version.

References

[1] A. AMBAINIS: A better lower bound for quantum algorithms searching an ordered list. In Proc. 40th

Annual Symp. Foundations of Computer Science, pp. 352–357. IEEE, 1999. quant-ph/9902053.
2

[2] A. AMBAINIS: A note on quantum black-box complexity of almost all boolean functions. Inf. Proc.
Lett., 71:5–7, 1999. quant-ph/9811080. 1

[3] A. AMBAINIS, A. BAC̆KURS, J. SMOTROVS, AND R. DE WOLF: Optimal quantum query bounds
for almost all Boolean functions, 2012. arXiv:1208.1122. 1

[4] H. BUHRMAN AND R. DE WOLF: Complexity measures and decision tree complexity: a survey.
Theoretical Computer Science, 288:21–43, 2002. 1, 2

[5] W. VAN DAM: Quantum oracle interrogation: Getting all information for almost half the
price. In Proc. 39th Annual Symp. Foundations of Computer Science, pp. 362–367. IEEE, 1998.
quant-ph/9805006. 6

[6] D. DUBHASHI AND A. PANCONESI: Concentration of measure for the analysis of randomized
algorithms. Cambridge University Press, 2009. 3

[7] J. JACKSON AND R. SERVEDIO: Learning random log-depth decision trees under uniform distribu-
tion. SIAM J. Comput., 34(5):1107–1128, 2005. 2

[8] I. KERENIDIS AND R. DE WOLF: Exponential lower bound for 2-query locally decodable codes
via a quantum argument. J. Comput. Syst. Sci., 69(3):395–420, 2004. quant-ph/0208062. 6

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 6

http://dx.doi.org/10.4086/cjtcs

ALMOST ALL DECISION TREES DO NOT ALLOW SIGNIFICANT QUANTUM SPEED-UP

[9] M. LEDOUX: The concentration of measure phenomenon. AMS Mathematical Surveys and
Monographs 89. American Mathematical Society, 2001. 3

[10] Y. SHI: Lower bounds of quantum black-box complexity and degree of approximating polynomials
by influence of boolean variables. Inf. Proc. Lett., 75(1–2):79–83, 2000. quant-ph/9904107. 3

[11] R. DE WOLF: A brief introduction to Fourier analysis on the boolean cube. Theory of Computing
Library Graduate Surveys, 1:1–20, 2008. 3

AUTHOR

Ashley Montanaro,
Centre for Quantum Information and Foundations,
Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, UK.
am994 cam ac uk.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 7

http://dx.doi.org/10.4086/cjtcs

	Introduction
	Proof of Theorem 1
	Remaining lemmas

	Conclusions
	References

