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Abstract

We study space and time efficient quantum algorithms for two graph problems
– deciding whether an n-vertex graph is a forest, and whether it is bipartite. Via a
reduction to the s-t connectivity problem, we describe quantum algorithms for deciding
both properties in Õ(n3/2) time and using O(log n) classical and quantum bits of
storage in the adjacency matrix model. We then present quantum algorithms for
deciding the two properties in the adjacency array model, which run in time Õ(n

√
dm)

and also require O(log n) space, where dm is the maximum degree of any vertex in the
input graph.

1 Introduction

Graph-theoretic problems are an important class of problems for which quantum algo-
rithms can be shown to be faster than any possible classical algorithm. Examples of such
problems include deciding whether there is a path between two vertices in a graph, or
whether a graph is planar. The latter is exemplary of a subclass of graph problems that
involve deciding whether or not a graph has a given property, which (besides planarity)
includes properties such as containing a triangle, being bipartite, or being a forest. Many
such graph properties are known to have efficient quantum algorithms [14, 12, 2].

However, most of these algorithms use Ω(n log n) bits of storage. Two exceptions are
the work of Belovs and Reichardt [8], who improve on the connectivity algorithm of [14]
by providing a time efficient (Õ(n3/2)) span-program-based algorithm for s-t connectivity
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that requires only logarithmic space, as well as Āriņš [3], who describes a query-efficient
(O(n3/2)) and space efficient (O(log n)), but not time efficient, algorithm for testing bipar-
titeness. Other than this, however, little is known about the quantum space requirements
for graph problems. It is desirable to have space efficient (i.e. O(log n)) as well as time
efficient algorithms for solving graph problems, since the graphs that will be good candi-
dates for quantum algorithms are likely to be extremely large, and possibly given implicitly.
Therefore reducing the amount of space (both classical and quantum bits) required to pro-
cess them is important; moreover, it will be interesting to know how the space requirements
of quantum algorithms relate to those of their classical counterparts.

We study space-efficient algorithms for graph problems. In particular, we focus on the
property of being a forest – that is, deciding whether the input graph contains a cycle. We
also consider the property of bipartiteness, which is characterised by containing no odd
length cycle as a subgraph. The property of being a forest is minor-closed with a single
forbidden minor (a triangle), whereas the property of bipartiteness is only subgraph-closed.
Equivalently, both properties can be characterised by an infinite number of forbidden sub-
graphs (all cycles and all odd-length cycles, respectively).

In this paper we consider two models for the input of a graph G with vertex set V and
edge set E:

• The adjacency matrix model – The input is given as the adjacency matrix A ∈
{0, 1}n×n, where Aij is 1 if and only if (i, j) ∈ E.

• The adjacency array model – We are given the degrees of the vertices d1, d2, ..., dn
and for every vertex i an array with its neighbours fi : [di]→ [n], so that fi(j) returns
the jth neighbour of vertex i, according to some arbitrary but fixed numbering of the
outgoing edges of i. Following Dürr et al. [14], we assume that the degrees are
provided for free as a part of the input, and we account only for queries to the arrays
fi. Moreover, we assume that the graph is not a multigraph (that is, each fi is
injective).

We also assume that the input graph is undirected, and therefore the adjacency matrix is
taken to be symmetric.

Classically, in the adjacency matrix model, each of the problems requires Θ(n2) queries
to the input adjacency matrix, since both the randomised and deterministic query complex-
ities of any (non-trivial) subgraph-closed graph property are Θ(n2), which can be shown
via a reduction from the unstructured search problem [12]. Known classical algorithms
that achieve this bound are based on breadth first search, and hence require more than
logarithmic space; however, by allowing more time the space requirement can be reduced.
In particular, by using random walks, Aleliunas et al. [1] provide O(n3) time and O(log n)
space algorithms for deciding bipartiteness and s-t connectivity. By taking into account
a reduction given in this paper, this implies a similar algorithm for detecting arbitrary
cycles.
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We describe a bounded-error quantum algorithm in the adjacency matrix model, which,
given as input a graph G with vertex set V and edge set E, returns some vertex v ∈ V that
is a part of a cycle in G if such a cycle exists, and otherwise returns false. The algorithm
runs in time Õ(n3/2) and requires O(log n) bits and qubits of storage, where the Õ notation
hides poly-logarithmic factors in n. Our algorithms are based on quantum walks and can
hence be seen as quantum analogues of the approach of Aleliunas et al. [1].

By a simple modification of the original algorithm, we obtain an algorithm that can
decide whether or not a graph is bipartite (i.e. contains no odd-length cycles), and has
the same time and space requirements. For both problems our algorithms are optimal up
to poly-logarithmic factors, almost matching the Ω(n3/2) quantum query lower bounds for
bipartiteness [37] and cycle detection [12].

The main new technical ingredient of the algorithms is a reduction from the problem of
cycle detection (or odd-length cycle detection, in the case of bipartiteness) to the problem
of s-t connectivity in some ancillary graph. We then apply the span-program-based s-t
connectivity algorithm of Belovs and Reichardt, introduced in [8], to this ancillary graph
without explicitly constructing it. Following this, we make use of a variant of Grover search
to look for a vertex that makes up a part of a cycle in the input graph. We include a full
proof of the efficiency of the s-t connectivity algorithm, which was omitted from [8].

We then turn to the adjacency array model. Dürr et al. prove a tight Ω(n) quantum
query lower bound for the s-t connectivity problem in the array model [14], which we extend
to give a Ω(n) bound on the problems of deciding bipartiteness and cycle detection in the
array model. By combining our reduction to s-t connectivity with the s-t connectivity
algorithm in [14], it is possible to construct algorithms that decide bipartiteness and detect
cycles in time Õ(n). These algorithms are therefore optimal up to poly-logarithmic factors,
but require O(n log n) space [14]. In order to preserve space efficiency, we use a quantum
walk based algorithm to decide s-t connectivity, but at the expense of time efficiency. Our
quantum walk based algorithm takes time Õ(n

√
dm), where dm is the maximum degree of

any vertex in the graph.

1.1 Previous Work

Dürr et al. [14] previously gave quantum query lower bounds for some graph problems in
both the adjacency matrix model and the adjacency array model, and in particular show
that the quantum query complexity of testing connectivity between two vertices is Θ(n3/2)
in the matrix model. In the following, unless explicitly stated, we will assume that any
bounds given are applicable to the adjacency matrix model. Ambainis et al. [2] show that
planarity also has quantum query complexity Θ(n3/2), and Zhang [37] gave a lower bound
of Ω(n3/2) for the problems of bipartiteness and perfect matching. More generally, Sun
et al. [32] showed that all graph properties have quantum query complexity Ω(

√
n), and

gave a non-monotone property for which this lower bound is tight (up to polylogarithmic
factors).
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An interesting graph property for which a tight lower bound has not been found is the
H-subgraph containment problem. In the most general form of this problem, we are asked
to determine whether or not the input graph contains the fixed graph H as a subgraph.
The best known lower bound for this property is only Ω(n). A special case is the property
of containing a triangle, and the best known lower bound for this problem is also Ω(n).
Le Gall [20] has described a quantum query algorithm that detects triangles using O(n5/4)
queries. Under the promise that the input graph either contains a triangle as a subgraph,
or does not contain it as a minor (the so-called subgraph/not-a-minor problem), Belovs and
Reichardt [8] provide an O(n) quantum query algorithm based on span-programs, which
can also be implemented time efficiently. Also under the promise of the subgraph/not-a-
minor problem, Wang [34] gives a span-program-based algorithm capable of detecting a
given tree as a subgraph in Õ(n) time.

Monotone graph properties are those that are subgraph-closed – that is, every subgraph
of a graph with the property also has that property. Likewise, a graph property is minor-
closed if every graph minor of a graph with the property also has that property. Over a
series of papers, Robertson and Seymour [30] showed that all minor-closed graph properties
can be described by a finite set of forbidden minors – graphs that do not appear as a minor of
any graph possessing the property. Some minor-closed properties can also be characterised
by a finite set of forbidden subgraphs.

The widely believed Aanderaa-Karp-Rosenberg conjecture [31] states that the deter-
ministic and randomised query complexities of all monotone graph properties are Θ(n2).
Childs and Kothari [12] show that all minor-closed properties that cannot be characterised
by a finite set of forbidden subgraphs have quantum query complexity Θ(n3/2). On the
other hand, they show that all minor-closed properties and sparse graph properties that
can be characterised by finitely many forbidden subgraphs can be determined in o(n3/2)
queries. Reichardt and Belovs [8] extended this result to show that any minor-closed prop-
erty that can be characterised by exactly one forbidden subgraph, which must necessarily
be a path or a (subdivided) claw, has query complexity O(n).

Some of these previous results can be applied to finding cycles. In particular, Childs
and Kothari [12] describe a method that can be used to reject graphs with more than n
edges in time Õ(

√
n). Since an n-vertex graph with more than n edges must necessarily

contain a cycle, we can immediately dismiss these cases in Õ(
√
n) time. The graphs that

are not rejected are then guaranteed to have fewer than n edges, which can be recon-
structed using O(n3/2) queries to the input adjacency matrix. Now we have (the adjacency
matrix of) a graph that is promised to have fewer than n edges. Under this promise, even
running a classical algorithm such as breadth first search can determine whether or not this
graph contains a cycle in O(n) time. Overall, the process takes time Õ(n3/2). However,
in order to reconstruct the edges of the graph, we require coherently addressable access to
O(n log n) classical bits/qubits.

To decide whether or not a graph is bipartite, Āriņš [3] designed a span program that
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gives rise to an (optimal) O(n3/2) quantum query algorithm. Our algorithm is inspired
by this span program, and makes use of the s-t connectivity span program of Belovs and
Reichardt as a sub-routine in a similar manner. We also provide a time (and space) efficient
implementation.

Piddock [24] described a span-program-based quantum query algorithm for detecting
cycles of constant fixed length, subject to the subgraph/not-a-minor promise, which re-
quires O(n3/2) queries to the input for odd length cycles, and O(n) queries for even length
cycles. This is in contrast to the present work, which detects cycles of arbitrary length
(with no promise on the input). Within the adjacency array model, Dürr et al. [14] suggest
a quantum query algorithm for deciding bipartiteness in O(n) queries, and using O(n log n)
space. An example of a reduction to s-t connectivity given in terms of span programs is the
work of Jeffery and Kimmel [17], in which the problem of evaluating nand-trees is reduced
to the problem of s-t connectivity on certain graphs.

The algorithms presented in this paper achieve optimal time complexity up to poly-
logarithmic factors, but require only O(log n) classical and quantum bits of storage. Thus,
we emphasise that our algorithms are also space efficient, with respect to the number of
classical and quantum bits of storage that they require. We assume that we have access
to quantum RAM (QRAM [15]), and that we use this for storage. We assume that we are
given access to an oracle that lets us evaluate edges of G, and which isn’t counted against
the space bound. Therefore our measure of space efficiency differs somewhat to other,
alternative definitions: for example, in investigating the computational power of space-
bounded quantum Turing machines, Watrous [35, 36] measured the space requirements
of the quantum (and classical) Turing machines in terms of the number of bits required
to encode certain information regarding configurations of these machines. Instead, we
consider the size of the QRAM required for our algorithms to run.

1.2 Organisation

We begin by introducing some useful results and background material in section 2. In
section 3, we present a reduction of the problem of cycle detection in a graph G to the
problem of s-t connectivity in some ancillary graph that is constructed from G, which is the
main ingredient for the algorithms that follow. Section 4 presents a randomised algorithm
for deciding whether a given vertex in a graph is a part of a cycle, and discusses the
probability with which this algorithm fails. Section 5 describes a more general algorithm
that allows the detection of arbitrary cycles, and then section 6 explains how to use a
modified version of this algorithm to decide whether or not a graph is bipartite. Finally,
section 7 discusses how to obtain an efficient algorithm in the adjacency array model, by
using a quantum walk in place of the span-program-based s-t connectivity algorithm used
in the previous sections.

Appendices A through C describe the span-program-based s-t connectivity algorithm
of Belovs and Reichardt [8], which is crucial for our results and introduced in section 2.

5



We include a proof of its correctness and time and space complexity, the details of which
were omitted from [8]. Appendix A briefly introduces span programs, and then Appendix B
presents a span program for the problem of s-t connectivity. Appendix C describes a general
method for implementing span programs time efficiently, due to Belovs and Reichardt, and
then applies this method to the span program for s-t connectivity (following the approach
in [8] very closely). Finally, Appendix D details the implementation of the operations
required for the quantum walk algorithm for s-t connectivity in the adjacency array model.

2 Preliminaries

We will make use of the following result of Belovs and Reichardt [8]:

Theorem 1. [Combination of Theorems 3 and 9 from [8]] Consider the st-connectivity
problem on a graph G given by its adjacency matrix. Assume there is a promise that if
s and t are connected by a path, then they are connected by a path of length at most d.
Then there exists a bounded-error quantum algorithm that determines whether s and t are
connected in Õ(n

√
d) time and uses O(log n) bits and qubits of storage, and which fails

with probability at most 1/10.

The proof of this theorem can be found in Appendix C.3.

We will also require some facts about k-wise independent hash functions:

Definition 1 ([23]). Let U be a universe with |U | ≥ n and let V = {0, 1, ..., n−1}. A family
of hash functions H from U to V is said to be strongly k-universal if, for any elements
x1, x2, ..., xk ∈ U , any values y1, y2, ..., yk ∈ V , and a hash function h chosen uniformly at
random from H, we have

Pr[(h(x1) = y1) ∩ (h(x2) = y2) ∩ · · · ∩ (h(xk) = yk)] =
1

nk
.

We will be interested in the case where k = 2, n = 2. In this case, the values h(x1), h(x2)
are pairwise independent, since the probability that they take on any pair of values is
1
n2 = 1

4 . The simplest construction, which suffices for our purposes, is to use functions
h : {0, 1}m → {0, 1} of the form h(x) = 〈a, x〉+ b mod 2, where 〈a, x〉 =

∑m
i=1 aixi mod 2

[23]. Each function is parameterised by two values a ∈ {0, 1}m, b ∈ {0, 1}. To achieve
pairwise independence of the values h(x1), h(x2) for x1, x2 ∈ {0, 1}m, we therefore require
m+1 truly random bits to specify a and b. Doing so gives us N = 2m pairwise independent
‘random’ bits.

To use a hash function to assign a value in {0, 1} to each of N elements, we require
O(logN) bits to specify the hash function h, from which h(x) can be calculated inO(log2N)
time [23].

Throughout the paper, we will use [n] := {1, ..., n} to denote the integers from 1 to n.
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3 Reduction of Cycle Detection to s-t Connectivity

Let G = (V,E) be a connected, undirected graph on n vertices. Fix some arbitrary
orientation of the edges (u, v) ∈ E by directing edges from u → v if v > u, v → u
otherwise. G is now a directed graph.

Now consider an ancillary graph H = (V ′, E′), where V ′ = {s, t} ∪ {vb : v ∈ V, b ∈
{0, 1, 2}} and E′ = {(ub, vb+1 mod 3) : (u, v) ∈ E, b ∈ {0, 1, 2}} ∪ {(s, k0), (t, k1)} for some
k ∈ V . Intuitively, we split each vertex v ∈ V into three vertices v0, v1, and v2. Then,
for each (directed) edge (u, v) ∈ E, we create three edges (u0, v1), (u1, v2), and (u2, v0) in
H. Finally, we add an edge between s and k0 and between t and k1, for some arbitrarily
chosen vertex k.

To analyse the reduction to s-t connectivity, we introduce the notion of ‘clockwise’ and
‘anticlockwise’ edges. Given an undirected cycle, fix an arbitrary vertex v in the cycle that
has at least 1 outgoing edge that makes up a part of the cycle (it is easy to verify that such
a vertex must exist). Starting with one of the outgoing edges, we traverse the cycle from
v back to v. Any edge that is oriented in the direction of traversal is defined as clockwise,
and any edge oriented against the direction of traversal is defined as anticlockwise. Figure
1 provides an example to illustrate the notion of clockwise and anticlockwise edges, and
gives two examples of the form of the graph H constructed from a cycle on 4 vertices,
showing how the reduction fails when the number of clockwise and anticlockwise edges is
equal modulo 3.

Figure 1: A successful (left) and unsuccessful (right) reduction to s-t connectivity for
G = C4, a cycle on 4 vertices, with clockwise and anticlockwise edges represented by solid
and dashed arrows, respectively
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We now prove the following lemma:

Lemma 1. Let G = (V,E) be a connected undirected graph, and let H = (V ′, E′) be
defined as above. Then there is a path from s to t in H if and only if there is a cycle
present in G, such that the difference D := p − q between the number of clockwise edges
p and anticlockwise edges q satisfies D 6≡ 0 mod 3. Furthermore, if k is chosen to be a
vertex on the cycle, then the length of the path between s and t is at most 2c+ 2, where c
is the length of the cycle.

Proof. First we show that if there is a cycle in G such that D 6≡ 0 mod 3, then there is
also a path from s to t in H. We will assume that the vertices of G are labelled arbitrarily
by the integers 1..n, and (without loss of generality) that k = 1. To find a path from s to t,
it suffices to find a path from 10 to 11. We assume that the edges of the cycle are oriented
in such a way that D 6≡ 0 mod 3. It is useful to recall that all edges in H are of the form
(ub, vb+1 mod 3), for b ∈ {0, 1, 2}, and such an edge only exists if the edge (u, v) is present
in G. Suppose that the cycle is of length c, and is composed of the vertices 2, 3, 4, ..., c, 2,
where each vertex label is arbitrary. First we show that this implies that there is a path
from 20 to 21 in H. In fact, we prove something stronger: that there must exist a cycle of
length 3c in H that contains all vertices ib for i ∈ {2, ..., c}, b ∈ {0, 1, 2}.

To see this, suppose that, starting at the vertex 20 in H, we follow the edges of H
that correspond to the edges of the cycle in G. Depending on the orientation of the first
edge, we first move to either vertex 31 (if the edge is directed 2 → 3) or 32 (if the edge is
directed 3→ 2). In general, at each step, we move from a vertex ud to a vertex ud±1 mod 3,
where the clockwise edges add 1 to the value of d, and the anticlockwise edges add −1.
We will refer to the value of d as the ‘parity’ of the vertex. After taking c steps, we will
have traversed p clockwise edges and q anticlockwise edges, and so we will arrive at vertex
2p−q mod 3. If p − q = D 6≡ 0 mod 3, then we must be at either 21 or 22, depending on
the value of D. By traversing the cycle again, we arrive at vertex 22D mod 3. Traversing
the cycle one final time, we arrive at 23D mod 3 = 20. Since 2D 6≡ D mod 3, unless D ≡ 0
mod 3, vertices 2D mod 3 and 22D mod 3 are distinct. Therefore, we have a path from 20 to
2b for some b ∈ {1, 2}, from 2b to 2b′ for b′ ∈ {1, 2} \ {b}, and from 2b′ to 20. Each path
must necessarily be disjoint, since each traversal around the edges of the cycle in G adds
the same sequence of +1s and −1s to the parity, and therefore starting with a different
initial parity ensures a unique path through the vertices of H. Since we have 3 disjoint
paths of length c, combining them gives us a cycle of length 3c that includes all vertices in
H corresponding to vertices in G that make up the cycle.

A straightforward consequence of this is that there exists a path from 2b to 2b′ in H if
there exists a cycle in G containing the vertex 2, for b 6= b′ ∈ {0, 1, 2}. Since G is connected,
there must be a path from 1 to 2 in G. By following the edges of this path, we can find a
corresponding path in H from 10 to 2b and from 11 to 2b+1 mod 3, for some b ∈ {0, 1, 2}.
Since there exists a path from 2b to 2b+1 mod 3 in H, there must also exist a path from 10

to 11.
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The length of this path will depend upon two things: the length of the shortest path
from 1 to 2 in G, and the length of the cycle in G. The former is determined by the length
the path from 1 to 2. In particular, following the edges of H that correspond to this path
in G will lead paths of length from 10 to 2b, and from 11 to 2b′ , for b 6= b′ ∈ {0, 1, 2}. The
length of the path from 2b to 2b′ in H is then at most 2c. To see this, consider traversing
the edges of H corresponding to the cycle in G, starting at 2b. As argued above, after c
steps we will arrive at a vertex 2b̃, for b̃ 6= b ∈ {0, 1, 2}. If b̃ = b′, then the length of the

path is c. On the other hand, if b̃ 6= b′ then we can take c more steps, at which point we will
arrive at 2b′ after a total of 2c steps. In order to prove the final part of the lemma, we note
that when the vertex k (which we have assumed without loss of generality is the vertex 2
in this case) is contained in the cycle, then the path from s to t will be determined only by
the length of the path from 20 to 21. By the arguments given here, this is at most of length
2c. Adding in the two edges incident to vertices s and t, we obtain the upper bound of 2c+2.

We will now show that if G does not contain a cycle, or if it contains a cycle such that
D = p− q ≡ 0 mod 3, then s and t are not connected in H.

Assume that G does not contain a cycle at all. Suppose that there is a path P from v0

to v1 in H, of the form v0, v
′
b, v
′′
b′ , ..., v1. Since, for every edge (ub, vb′) ∈ E′ there must be

a corresponding edge (u, v) ∈ E, we can construct a path Q = v, v′, v′′, ..., v in G from P .
However, this gives a cycle in G, and hence, a contradiction.

Suppose instead that there is a cycle of length c in G such that D ≡ 0 mod 3. We
have shown that this implies the existence of a path of length c from vb back to vb for any
vertex v in the cycle and for all b ∈ {0, 1, 2}. Since each such cycle must be disjoint (by
the same argument as before), there cannot be a path from any vb to vb′ for b 6= b′, else
the cycles would necessarily share vertices.

Lemma 1 shows us that the problem of cycle detection on a graph G reduces to the
problem of s-t connectivity on some ancillary graph H. Therefore, if we can test for s-t
connectivity efficiently on the graph H, then we can also test efficiently for cycles in G.
However, this reduction fails when the input graph is such that the number of clockwise
edges equals the number of anticlockwise edges modulo 3. The next section will discuss a
randomised algorithm that deals with this case.

4 Algorithm for Cycle Detection

In this section, we describe an algorithm that makes use of both the reduction of cycle
detection to s-t connectivity, and the s-t connectivity algorithm of Belovs and Reichardt.
In particular, we prove:

Theorem 2. There exists a quantum algorithm which, given as input a graph G = (V,E),
a vertex k ∈ V , and an integer d, outputs true with probability ≥ 9/20 if G contains a
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cycle of length l ≤ d that includes k, and returns false with probability ≥ 9/10 if it does
not contain any cycle. The algorithm takes Õ(n

√
d) time and requires O(log n) space.

Proof. By Lemma 1, the problem of detecting if a vertex k is included in a cycle reduces
to the problem of s-t connectivity on an ancillary graph H, which is constructed from G.
By Theorem 1, we can test for s-t connectivity in an n vertex graph in Õ(n

√
l) time and

O(log n) space, where l is an upper bound on the length of the path connecting s and t.
Lemma 1 also states that, if k is contained within a cycle of length d, then there is a path
from s to t in H of length at most 2d+ 2. It is worth noting that Lemma 1 actually gives
a stronger result – that there is a path from s to t in H when there exists some path from
k to a cycle in G, provided that the cycle satisfies some constraints on the orientations
of its edges. However, as we will see, for some inputs, the algorithm could fail to detect
such cases with certainty. Thus, we restrict ourselves to the worst case – that in which the
algorithm can only detect the presence of a cycle that includes the vertex k.

If we can show that there is some efficient map from the edges of H to the edges of G,
then the s-t connectivity algorithm can be run on the graph H whilst only querying the
input oracle for G, and we can detect cycles in G in time Õ(n

√
d).

Additionally, we must show that the algorithm fails only with some constant probability,
even when given a ‘bad’ input (one with an equal number of clockwise and anticlockwise
edges (modulo 3)).

We begin by describing a randomised approach which causes the reduction to s-t con-
nectivity to fail with only constant probability when given a bad input. Suppose we were
to run the s-t connectivity algorithm on the graph H associated with an input graph G,
which contains a cycle. If the adjacency matrix of the graph were such that the number of
clockwise edges and the number of anticlockwise edges on the cycle were congruent modulo
3, then the algorithm, as it stands, would fail to detect the cycle with certainty, as a result
of Lemma 1.

We could prevent the algorithm from failing by flipping the direction of a single edge
on the cycle. Recall that we are given some vertex k ∈ V , and add edges (s, k0) and (t, k1)
in H before testing for a path between s and t. Our solution is to flip the direction of some
random subset of the edges adjacent to vertex k, and show that this flips exactly one edge
on the cycle with high probability (≥ 1/2).

To choose a random subset of edges to flip, we colour every vertex in G with a colour
chosen from {0, 1}. Then, for every edge adjacent to k in G, if the vertex at the end of
the edge is coloured 1, we flip the direction of the edge, and otherwise do nothing. The
colouring is achieved using a family of pairwise independent hash functions H from [n] to
{0, 1}. The pairwise independence gives the constraint that, for x, y ∈ [n] and a, b ∈ {0, 1},
and a hash function h chosen uniformly at random from H,

Pr[h(x) = a ∩ h(y) = b] =
1

4
.

Let the two vertices adjacent to k in the cycle be a and b, and choose a pairwise independent
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hash function h uniformly at random from H. Then, by pairwise independence, we have

Pr[h(a) = h(b) = 0] = Pr[h(a) = h(b) = 1] =
1

4

and

Pr[h(a) 6= h(b)] =
1

2
.

So the above method will fail to flip either of the edges (a, k), (b, k) with probability 1
4 .

Otherwise, with probability 1
2 exactly one of the two edges will be flipped, and with prob-

ability 1
4 both edges will be flipped. Thus, with probability at least 1

2 , the number of
clockwise edges will no longer equal the number of anticlockwise edges modulo 3. There-
fore, by colouring the vertices of the graph using a pairwise independent hash function, the
algorithm will fail with probability at most 1

2 when given a ‘bad’ input. On the other hand,
if the algorithm is given some ‘good’ input, then this process may cause the algorithm to
fail; however, this will happen with probability at most 1/4, by the same argument as
before.

Now we consider the map from the edges of H to the edges of G. We can query the
adjacency matrix of H implicitly by querying the entries of G’s adjacency matrix. Given
two vertices ub and vb′ in H, we test for the presence of the edge (ub, vb′) as follows. First
we determine the direction of the edge (u, v) in G, if it were to exist. If v > u, then the
edge is directed from u → v, otherwise it is directed from v → u. If u = k, then we look
up the colour of vertex v as determined by our hash function, and vice versa if v = k. If
the colour is 0, we do nothing; if it is 1, we flip the edge.

Next we test whether the edge is allowed to exist. If the edge is directed from u → v,
then it is allowed only if b′ ≡ b + 1 mod 3. Similarly, if the edge is directed from v → u,
then it is allowed only if b′ ≡ b− 1 mod 3. Finally, if the edge is allowed to exist, then we
test for its presence in G by querying the uv entry of G’s adjacency matrix. If the result of
the query is 1, then the edge exists and we return 1. In all other cases (the query returns
0, or the edge is not allowed), we return 0.

We can use this map to run the s-t connectivity algorithm on H without explicitly
constructing it. That is, rather than allowing the algorithm to query the input oracle for
G, we allow it to query the circuit that implements the process described above, which will
query the input oracle for G as appropriate. All steps of the map run in time polylog(n)
and require log n space.

Probability of Failure – We have already shown that if the input graph G contains a
cycle that includes vertex k, then there will be a path from s to t in H with probability at
least 1/2. In this section, we consider the probability of detecting this path using the s-t
connectivity algorithm of Belovs and Reichardt. Recall that their algorithm runs in time
Õ(n
√
d), where d is an upper bound on the length of the path connecting s and t, and
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requires O(log n) space. In our case, the length of the path is proportional to the length of
the cycle that we are trying to detect. Since we do not know this length in advance, we do
not know an upper bound on the length of the path between s and t in H. Therefore, we
will have to ‘guess’ an upper bound, and modify this guess as the algorithm progresses.

By Theorem 1, if d ≥ l, then the s-t connectivity algorithm detects the presence of a
cycle with probability at least 9/10 if one exists, and otherwise says that no cycle exists
with probability at least 9/10. If G contains a cycle of length l ≤ d that includes k,
then with probability p ≥ 1/2 there will be a path from s to t in H. By running the s-t
connectivity algorithm on H, we will detect this path with probability 9/20.

If G does not contain a cycle, then there will be no path from s to t in H, and the s-t
connectivity algorithm will return false with probability ≥ 9/10.

In the case that G contains a cycle of l > d, then the s-t connectivity algorithm may
still detect the presence of the path from s to t in H. However, since this probability could
be very small, we shall assume that it never detects such a cycle.

The colouring step requires the use of a pairwise-independent hash function, which re-
quires O(log n) space and O(log2 n) time. The s-t connectivity algorithm requires O(log n)
space and Õ(n

√
d) time. Therefore, the algorithm of Theorem 2 requires Õ(n

√
d) time and

O(log n) space.

5 Detecting Arbitrary Cycles

In the previous sections we described an algorithm that, given a graph G = (V,E), a vertex
k ∈ V , and an estimate d of the length of a cycle in G, outputs 1 with probability ≥ 9/20
if there is a cycle of length l ≤ d in G that contains k, and outputs 0 with probability
≥ 9/10 if G does not contain a cycle. By repeating the algorithm O(log 1/ε) times and
using majority voting, we obtain an algorithm A that fails (i.e. returns false positives or
false negatives) with probability at most ε. In particular, we could reduce the probability
of failure of A to 1

poly(n) with only an O(log n) overhead. In this case, since the overall

algorithm calls A poly(n) times, we can reduce the probability of failure of the overall
algorithm to an arbitrary constant. This holds even for quantum algorithms calling A in
superposition [9, 16].

We can use this algorithm as a sub-routine for a more general algorithm that is capable
of detecting the presence of arbitrary cycles in G. In particular, we make use of a variant of
Grover search over a set of N elements that allows us to search for a good solution without
knowing how many good solutions there are. The approach was introduced in [10], and
proceeds as follows:

QSearch:

1. Initialise m = 1 and set λ so that 1 < λ < 4/3.
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2. Choose j uniformly at random from the nonnegative integers smaller than m.

3. Apply j iterations of Grover’s algorithm, starting from initial state |Ψ0〉 =
∑

v
1√
N
|v〉.

4. Observe the register: let i be the outcome.

5. If i is indeed a solution, then the problem is solved: exit.

6. Otherwise, set m to min(λm,
√
N) and go back to step 2.

Then [10] proves the following result:

Theorem 3 (Theorem 3 of [10]). Given oracle access to some Boolean function f : [N ]→
{0, 1}, such that the set of ‘solutions’ M = {x ∈ [N ] : f(x) = 1} has unknown size
t = |M |, the algorithm QSearch finds a solution if there is one using an expected number
of O(

√
N/t) Grover iterations. In the case that there is no solution, then QSearch runs

forever.

We will use a variant of this algorithm to search over the set of vertices in the input
graph, using the algorithm A as an oracle – that is, for each vertex v ∈ V , we will call A
with some guess d and with the vertex k set to v. We will call QSearch multiple times,
each time with a different guess at the cycle length, and will ask it to stop after some
number of iterations that depends on the current guess. More precisely, we perform the
following:

1. For i = 1 to dlog2 ne:

(a) Run QSearch over the vertices of the graph with d = 2i, and stop when we
have performed more than C ′′

√
n
2i

Grover iterations, for some constant C ′′.

(b) If QSearch returns a solution, then output the solution and exit, otherwise
continue.

2. Output ‘no cycle exists’.

This detects the presence of a cycle with high probability if one exists, since, as soon as
i becomes large enough that d = 2i ≥ l, the cycle detection algorithm detects the presence
of cycles with (arbitrarily) high probability. At this point, QSearch finds a good solution
(i.e. a vertex that causes the cycle detection algorithm to accept) with high probability.

More precisely, when d ≥ l, l out of n vertices will provide good solutions (i.e. will
have caused A to accept). At this point, by Theorem 3, the expected number of Grover
iterations required to find a solution using QSearch is≤ D

√
n/l for some (known) constant

D. When i first becomes large enough that d = 2i ≥ l, the guess d will be at most twice
the length of the cycle l, i.e. d ≤ 2l. Since the expected number of iterations to find a

13



solution using QSearch at this point is ≤ D
√
n/l, if we stop after C ′′

√
n
2i

iterations, the
probability that QSearch has not been able to find a solution yet is bounded above by

Pr

[
no solution after C ′′

√
n

2l
iterations

]
≤ D

√
2

C ′′

by Markov’s inequality, and we can choose C ′′ to make this probability arbitrarily small.
Each round of the algorithm after this point has a smaller probability of detecting the cycle,
since we perform fewer Grover iterations as i increases. However, by choosing sufficiently
large C ′′, we can ensure that the probability of failing to detect a cycle during the first
round of QSearch in which d ≥ l is smaller than, say, 1/3.

If G does not contain a cycle, then A will return false with high probability on all
vertices, independently of the value of d. Therefore, QSearch will fail to ‘find’ a solution
with high probability every time it is run, and the above algorithm will output ‘no cycle
exists’ with high probability.

To analyse the time complexity of the algorithm, we will consider what happens when
there is no cycle present. If a cycle is present, then by the above argument it will be
found with high probability and the algorithm will exit early, requiring less time. In the
ith round of the above algorithm, we run QSearch, stopping after O(

√
n
2i

) iterations of
Grover search have been performed. Each iteration of Grover search requires a single call
to both A and A−1, each of which take time Õ(n

√
d) = Õ(n

√
2i). Therefore, the time

taken to run the ith round is O(
√

n
2i

) · Õ(n
√

2i) = Õ(n3/2).

We run at most dlog2 ne rounds of the above process, requiring at most Õ(n3/2) time
in total.

In summary, by making use of a variant of Grover search and repeatedly guessing at
increasing cycle lengths, we are able to find a vertex k ∈ V that is part of a cycle in G
with probability ≥ 2/3 if such a vertex exists, and return false with probability ≥ 2/3 if G
contains no cycle. This requires Õ(n3/2) time and O(log n) bits and qubits of storage.

6 Deciding Bipartiteness

We can view the algorithm for cycle detection as a special case of a more general algorithm.
Currently, we arbitrarily orient the edges of an initially undirected graph, and accept if this
forms a cycle in which the number of clockwise and anticlockwise edges are unequal modulo
3. We might ask what happens when we look for cycles with an unequal number of clockwise
and anticlockwise edges modulo some other constant s. This would change the reduction to
s-t connectivity by modifying the structure of the graph H that is constructed from G. In
particular, each vertex in G would be split into s sub-vertices in H, and for each edge (u, v)
in G we would have s corresponding edges (u0, v1), (u1, v2), ..., (us−2, vs−1), (us−1, v0). The
cases s > 3 behave similarly to the case s = 3, and are uninteresting. However, the case
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s = 2 proves useful. In this case, the original algorithm (i.e. without random colouring)
fails when the number of clockwise edges and the number of anticlockwise edges in every
cycle C differs by some multiple of 2. This will be the case if C is of even length, and
is independent of the orientation of the individual edges. Conversely, no odd-length cycle
will cause the algorithm to ‘fail’. This means that, given some graph G = (V,E) and a
vertex k ∈ V , the algorithm will accept (with certainty) if k is a part of an odd-length
cycle, and reject otherwise. A graph is bipartite if and only if it contains no odd-length
cycles. Thus, setting s = 2 (and omitting the colouring step) allows us to decide whether
or not a graph is bipartite. Since we have only removed a step of the algorithm, it still
runs in time Õ(n3/2) and requires O(log n) space.

7 Cycle Detection in the Adjacency Array Model

Rather than an adjacency matrix, we may be provided with an adjacency array description
of a graph as an input. In this model, the graph is given to us as a list of vertices associated
to each vertex in the graph, which define its neighbours in the graph. Following [14], we
assume that we are given the following information:

• The degrees of the vertices d1, d2, ..., dn and for every vertex u an array with its
neighbours fi : [di]→ [n]. So fi(j) returns the jth neighbour of vertex i, according to
some arbitrary but fixed numbering of the outgoing edges of i. We will assume that
the input graph is undirected.

Since we are given the degrees of each vertex for free, we can calculate the number of edges
m as m = 1

2

∑
u∈V du. In this way, we can discard any n-vertex input graph with m ≥ n,

since such a graph must necessarily contain a cycle. This means that we only need to
consider graphs with m < n. If we can map from the edges of H to the edges of G in the
adjacency array model, then we can run a quantum walk on H, starting from s and with
t as the single marked vertex, which, by a result of Belovs [6, 7], can be used to decide s-t
connectivity. By making use of the reduction of Lemma 1, and the version of Grover search
outlined in section 5, we can use a quantum walk in place of the span-program-based s-t
connectivity algorithm to detect cycles in the adjacency array model in time Õ(n

√
dm),

where dm is the maximum degree of any vertex in the graph.

7.1 Map from the edges of H to the edges of G

Given a vertex ub in H, we want to be able to produce an array of its neighbours. In
particular, for a vertex ub we need a function gub : [d′ub ] → [3n], where d′ub is the degree

of vertex ub in H, so that gub(j) returns the jth neighbour of vertex ub in H. First, note
that the degree of the vertex ub in H is the same as the degree of the vertex u in G – that
is, d′ub = du, unless ub is connected to s or t. Also, recall that the neighbours of vertex
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ub in H are all of the form vb′ , where v is a neighbour of u in G, and b′ depends on the
orientation of the edge (u, v).

In general, suppose that we want to compute gub(j), the jth neighbour of vertex ub.
We know that it will be vb′ , for v = fu(j) (i.e. the jth neighbour of vertex u in G) and
some b′ ∈ {0, 1, 2}. To calculate b′, we use the same process described in section 4, which
begins by determining the direction of the edge (u, v) as follows: if v > u, then the edge is
directed u→ v, otherwise it is directed from v → u. If u = k, then we look up the colour
of vertex v as determined by our hash function, and vice versa if v = k. If the colour is
0, we do nothing; if it is 1, we flip the edge. Finally, if the edge is directed u → v, then
b′ = b+ 1 mod 3, otherwise b′ = b− 1 mod 3. We then return the answer: gub(j) = vb′ .

The functions gub for every vertex ub in H can be computed using the function fu
given by the adjacency array for vertex u, as well as some other operations that require
O(polylog(n)) time and O(log n) space. Therefore, we can implement a quantum walk
on the graph H by implicitly querying the adjacency arrays for the vertices in G. The
following section describes such a quantum walk.

7.2 Quantum Walk for s-t Connectivity

We use a quantum walk algorithm presented by Belovs in [6] and [7] for detecting a marked
vertex in a graph, with the starting vertex set to s and with t being the only marked vertex
in the graph. Then the presence of a path from s to t can be detected in Õ(

√
ln) steps of

the quantum walk, where l is the length of the path. Thus, given a vertex k in the graph
and some upper bound d on the length of the cycle, we can detect the presence of a cycle
that includes k in Õ(

√
dn) steps of the quantum walk. Then by using the same variant of

Grover search in section 5, we can detect the presence of an arbitrary cycle in Õ(n) steps.

7.3 Implementation

In this section we describe an analogue of the algorithm from section 4, which uses Belovs’
quantum walk in place of the span-program-based s-t connectivity algorithm of Reichardt
and Belovs. As before, the algorithm takes as input a graph G = (V,E) (except this time
in the adjacency array model), a vertex k ∈ V , and some integer d. It outputs true with
some probability when G contains a cycle that includes k, and returns false with some
probability when G contains no cycles. Since we can dismiss graphs with more than n
edges in Õ(n) time, we henceforth assume that the input graph has fewer than n edges.

Once again, we consider the graph H = (V ′, E′) corresponding to the graph G = (V,E).
In order to apply the quantum walk, we must first make H bipartite (which, in general, it
will not be to begin with). To do this, we transform H = (V ′, E′) into H ′ = (V ′′, E′′) with
vertex set V ′′ = V ′ × {0, 1} and edge set E′′ = {((u, 0)(v, 1), (u, 0)(v, 1)) : uv ∈ E′}. Then,
we set s = (k0, 0) and t = (k1, 1). The graph is now bipartite, and we can still efficiently
compute the neighbours of each vertex. Let A be the set of vertices {(u, 0) : u ∈ V ′} and
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B the set of vertices {(u, 1) : u ∈ V ′}, and let du denote the degree of vertex u.
The vectors {|s〉 ⊗ |es〉} ∪ {|u〉 ⊗ |v〉 : (u, v) ∈ E} give the basis for the vector space of

the quantum walk, which starts in the state |s〉 |es〉. Let Hu = span({|u〉 |v〉 : (u, v) ∈ E})
denote the local space of vertex u 6= s, and Hs = span({|s〉 |v〉 : (s, v) ∈ E} ∪ {|s〉 |es〉}). A
step of the quantum walk is defined as RARB where RA =

⊕
u∈ADu and RB =

⊕
u∈BDu.

Each diffusion operator Du acts only on Hu, and is defined as follows:

• Dt is the identity.

• If u /∈ {s, t}, then Du = I − 2 |ζu〉 〈ζu|, where

|ζu〉 =
1√
du

∑
(u,v)∈E

|u〉 |v〉 .

• Ds = I − 2 |ζs〉 〈ζs|, where

|ζs〉 =
1√

1 + dsCd

|s〉 |es〉+
√
Cd

∑
(s,v)∈E

|s〉 |v〉

 , (1)

for some constant C.

Then we have the following result, which follows directly from Theorem 4 of [6]:

Theorem 4. Given a graph G = (V,E) such that |E| ≤ n, two vertices s and t in G, and
an integer d, then by applying RA and RB O(

√
dn) times we can detect a path from s to t

with probability ≥ 2/3 if a path of length l ≤ d exists, or otherwise say that no path exists
with probability ≥ 2/3.

By using the same arguments given in section 5, we can make use of the algorithm of
Theorem 4 to detect arbitrary cycles by applying the operators RA and RB Õ(n) times.
Furthermore, we may use a special case of this algorithm to decide bipartiteness, also
requiring Õ(n) applications of RA and RB. The efficiency of the algorithm then depends
on the efficiency with which we can implement the reflections RA and RB.

7.4 Implementing RA and RB

We will restrict our attention to RA; RB is implemented similarly (and is actually easier,
since the vertex s, which requires a more complex diffusion operator, is in A). We need to
implement

RA =
⊕
v∈A

Dv =
⊕
v∈A

(I − 2 |ζu〉 〈ζu|)

=
⊕
v∈A

(I − 2 |v〉 〈v| ⊗ |φv〉 〈φv|)

= I − 2
∑
v∈A

(|v〉 〈v| ⊗ |φv〉 〈φv|)
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where we define |φv〉 := 1√
dv

∑
i∈[dv ] |fv(i)〉 for v 6= s (recall that we are given the degrees

d1, d2, ..., dn of each vertex, and for each vertex v a function fv : [dv] → [n], so that fv(j)
returns the jth neighbour of vertex v.). |φs〉 is defined slightly differently: there is an extra
|s〉 term in equation (1), which we view as a ‘dangling’ edge es incident to vertex s, which
is defined to be the (ds + 1)th neighbour of s, where ds is the degree of vertex s. That is,
we add an entry to the adjacency array for s so that fs(ds + 1) = es. Then we may define

|φs〉 :=
1√

1 + dsCd

|fs(ds + 1)〉+
√
Cd

∑
i∈[ds]

|fs(i)〉

 .

Intuitively, the |φv〉 states represent the neighbours of the vertex v, in correspondence with
the states |ζv〉 given above.

If we can implement a map |v〉 |0〉 7→ |v〉 |φv〉 for each vertex v ∈ A, then we may
implement RA by performing the local reflections I−2 |v〉 〈v|⊗ |φv〉 〈φv| in parallel for each
v ∈ A. It is possible to implement the map efficiently for every vertex in superposition –
in particular, we have the following result:

Lemma 2. RA and RB can be implemented using O(
√
dm) queries to the adjacency array,

and polylog(n) additional operations per query.

The proof of this lemma is presented in Appendix D. Since the quantum walk algorithm
requires Õ(n) applications of RARB, then by Lemma 2 the total time required is Õ(n

√
dm).

If we are given no promise on the maximum degree of the graph, then in the worst case
the algorithm will take time Õ(n3/2), which matches the time complexity of the algorithm
in the adjacency matrix model.

7.5 Lower Bounds

We provide Ω(n) quantum query lower bounds, which follow from almost the same reduc-
tion used by Dürr et al. in [14] to prove a lower bound on s-t connectivity in the array
model – namely a reduction from the Parity problem. The Parity problem is defined as
follows: given a bit-string x ∈ {0, 1}p of length p, are there an even or an odd number of
bits set to 1? Alternatively, we might consider the bit-string x to be the output of some
function for each of the input integers 0...p− 1.

We reproduce the reduction here, and show how it leads to lower bounds for both cycle
detection and bipartiteness.

Lemma 3. Bipartiteness testing and cycle detection both require Ω(n) queries in the ad-
jacency array model.

Proof. Let x ∈ {0, 1}p be an instance of the parity problem. We construct a permutation
f on {vi,b : i ∈ [p], b ∈ {0, 1}} which has exactly 1 or 2 cycles, depending on the parity of
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Figure 2: Reduction from Parity (similar to [14])

x. We define f(vi,b) = vi+1,b⊕xi and f(vi+1,b⊕xi) = vi,b (so that f is symmetric), where the
addition is modulo 2p (and ⊕ denotes addition modulo 2).

The (undirected) graph defined by f has two levels and p columns, each corresponding
to a bit of x – see Figure 2. A walk starting at vertex v0,0 and using each edge at most
once, will go from left to right, changing level whenever the corresponding bit in x is 1.
So when x is even, the walk returns to v0,0 while having only explored half of the graph,
otherwise it returns to v0,1, and then connects from there to v0,0 by p more steps.

If we were to arbitrarily remove a single edge from the graph defined by f , we would
either have no cycle present (if x is odd), or exactly one cycle present (when x is even).
Therefore, if we can detect cycles in this modified graph, then we can decide the parity of
x. That is, after removing a single (arbitrary) edge, there is a cycle present if and only if
the parity of x is even. This gives a Ω(n) quantum query lower bound for cycle detection
in the adjacency array model.

In the case of bipartiteness, we ensure that x has an odd number of bits by adding a
‘dummy’ bit xp = 0 if p = 2m for some integer m. We fix this dummy bit to zero, so that
it doesn’t affect the parity of x. This has the effect of adding two additional vertices vp,0
and vp,1 to the graph such that f(vp,0) = v0,0 and f(vp,1) = v1,1 (and vice versa). After
this modification, we have a single cycle of length 2p+ 2 in the graph if x is even, or two
disjoint cycles of length p + 1 if x is odd. Since p + 1 is an odd integer, there is an odd
cycle in the graph if and only if x is odd.

In the case where p is not even, we do not add the dummy bit, and so we also have an
odd cycle in the graph if and only if x is odd. In both cases, the graph is bipartite if and
only if the parity of x is odd. This gives the required bound.

Note that these lower bounds are actually tight, since the quantum query complexity
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of s-t connectivity is Θ(n) in the array model [14], implying the existence of O(n) quantum
query algorithms for both bipartiteness testing and cycle detection, which can be obtained
by applying an O(n) query algorithm for s-t connectivity to the ancillary graph used in
the reduction from cycle detection and bipartiteness.
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A Span Programs

Span programs are a linear algebraic model of computation, introduced by Karchmer and
Wigderson in 1993 [18], that have many applications in classical complexity theory, and
can be used to evaluate decision problems. Reichardt and Špalek [29] introduced a new
complexity measure for span programs, the witness size, which Reichardt later showed to
have strong connections with quantum query complexity [25, 27]. In particular, he showed
that the witness size of a span program and the query complexity of a quantum algorithm
evaluating that span program are separated by at most a constant factor. This suggests
that span programs may be useful for designing new quantum algorithms.

Span programs have been used to design quantum query algorithms for formula evalua-
tion [29, 28, 26], the matrix rank problem[4], subgraph detection [38, 5, 8], s-t connectivity
[8], and strong connectivity [3]. For completeness, we briefly introduce this model; for
further details, see [18, 8].

A.1 Formal Definition

A span program P takes as input an n-bit string x ∈ D ⊆ {0, 1}n, and either accepts or
rejects it. That is, it implements the (partial) boolean function fP : D → {0, 1}.

Definition 2. A span program is defined by a tuple P = (H, |τ〉 , {Mi,b},Mfree), where H
is a finite-dimensional Hilbert space, |τ〉 ∈ H is the ‘target vector’, {Mi,b} is a set of sets
of vectors for i ∈ [n], b ∈ {0, 1}, where each Mi,b ⊆ H is a finite set of vectors which we
will collectively call ‘input vectors’, and Mfree ⊆ H is a set of ‘free’ input vectors.
Given an input x, denote by M(x) =

⋃
{Mi,b : i ∈ [n], xi = b} ∪Mfree. Then the span

program accepts if the target vector |τ〉 can be written as a linear combination of the vectors
in M(x):

f(x) = 1 ⇐⇒ |τ〉 ∈ span(M(x)).

Informally, the span program consists of sets of vectors that are either available or
unavailable, depending on the input given to the span program. Generally speaking, we
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associate two sets of vectors to each input bit xi, so that if xi = 1, then the vectors in Mi,1

are available and those in Mi,0 are unavailable, and vice versa. The vectors contained in
Mfree are always available, and any set Mi,b, Mfree may be empty.

A.1.1 Witnesses

Notation Call M(x) the set of available input vectors and let d be the dimension of
the Hilbert space H and m be the total number of input vectors and free input vectors
(also referred to as the ‘size’ of P). Write the set of all input vectors and free vectors as
{|vj〉 : j ∈ [m]}. Finally, define M :=

∑m
j=1 |vj〉 〈j|, which can be thought of as a matrix

with all input vectors as columns.

Positive case If P accepts x, then we can write |τ〉 as a linear combination of available
input vectors:

|τ〉 =
∑

vj∈M(x)

wj |vj〉 .

Then the coefficients wj give a positive witness vector for x, |w〉 =
∑

j wj |j〉, such that

M |w〉 = |τ〉. The size of the witness is defined as ‖ |w〉 ‖2.

Negative case If P rejects x, then it must not be possible to construct |τ〉 using a linear
combination of the available input vectors. Therefore, there must be some component of
|τ〉 that is orthogonal to all available input vectors. That is, there must exist some vector
|w′〉 such that 〈w′|vj〉 = 0 for all vj ∈ M(x), and 〈w′|τ〉 6= 0. In order for the witness size
to be well defined, we require that 〈w′|τ〉 = 1. We call the vector |w′〉 the negative witness
vector for x. The size of the witness is defined as

‖M † |w′〉 ‖2 = ‖
m∑
j=1

|j〉 〈vj |w′〉 ‖2 =
∑

vj /∈M(x)

| 〈vj |w′〉 |2

This equals the sum of the absolute squares of the inner products of |w′〉 with all unavailable
input vectors.

Witness size The witness size of P on input x, wsize(P, x), is defined as the minimum
size among all witnesses for x. For domain D ⊆ {0, 1}n, let

wsizeb(P,D) = max
x∈D:fP (x)=b

wsize(P, x).

Then the witness size of P on domain D is defined as

wsize(P,D) =
√

wsize0(P,D)wisze1(P,D)
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B Span Program for s-t Connectivity

We present here a span program for solving the problem of s-t connectivity, due to Belovs
and Reichardt [8]. Formally, the problem is defined as follows: given an n-vertex graph
G = (V,E), and two vertices s, t ∈ V , is there a path from s to t in G?

B.1 Span Program

Define a span program P using the vector space Rn, with an orthonormal basis {|v〉 : v ∈ V }
– i.e. a basis vector for each vertex in G. We suppose that the input to the program is a
bit string of the form xij for i, j ∈ V , such that xij = 1 iff there is an edge (i, j) ∈ E. Then
the span program is defined as follows:

• Target Vector: |τ〉 = |t〉 − |s〉.

• Available Input Vectors: For each edge (u, v) ∈ E, (i.e. xuv = 1), we make
available the input vector |v〉 − |u〉.

There are no free input vectors. It might be useful to note that in this example, the set
of all input vectors is {|j〉 − |i〉 : i 6= j ∈ V }, with an input vector corresponding to every
possible edge that might occur in G, given the vertex set V . Therefore, the total number
of input vectors is m =

(
n
2

)
.

Now we prove correctness and calculate the witness sizes.

Positive Case Suppose s and t are connected in G. Then there must exist some path of
length, say, d between them: s = u0, u1, ..., ud = t. Then all of the vectors |u1〉− |s〉 , |u2〉−
|u1〉 , ..., |t〉 − |ud−1〉 are available. Simply adding all these vectors, each with unit weight,
gives |t〉 − |s〉 = |τ〉. Since the positive witness will consist of d entries of +1, the positive
witness size is O(d).

Negative Case Suppose that s and t are not connected in G, and instead lie in different
connected subcomponents of G. We must show that a negative witness |w′〉 exists, such
that 〈w′|τ〉 = 1, and 〈w′|v〉 = 0 for all available input vectors v. We can define |w′〉
by its inner product on all basis vectors: let 〈w′|u〉 = 1 if u is in the same connected
subcomponent as t, and 〈w′|u〉 = 0 otherwise. Then we have that 〈w′|τ〉 = 〈w′| (|t〉−|s〉) =
〈w′|t〉 − 〈w′|s〉 = 1− 0 = 1. If an input vector of the form |v〉 − |u〉 is available, then there
is an edge between vertices u and v in G, and therefore both u and v belong to the same
connected subcomponent in G. Therefore, 〈w′|v〉 = 〈w′|u〉 in all such cases, and |w′〉 is
orthogonal to all available input vectors. Since there are at most

(
n
2

)
= O(n2) unavailable

input vectors, and the inner product between |w′〉 and any basis vector is either 0 or 1, the
negative witness size is O(n2).

The span program P therefore has witness size O(n
√
d).
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C Time Efficient Implementation of Span Program

C.1 Preliminaries

We will require some facts about the eigenspaces of the product of two reflections. Let
A and B be matrices each with n rows and orthonormal columns. Let ΠA = AA† and
ΠB = BB† be the projections onto the column spaces of A and B, respectively. Let
RA = 2ΠA − I and RB = 2ΠB − I be the reflections about the corresponding subspaces,
and let U = RBRA be their product.

Lemma 4. (Spectral Lemma [33]). Under the above assumptions, all the singular values
of A†B are at most 1. Let cos θ1, ..., cos θl be all the singular values of A†B lying in the open
interval (0, 1), and let C(A) and C(B) denote the column spaces of A and B, respectively.
Then the following is a complete list of the eigenvalues of U :

• The +1 eigenspace is (C(A) ∩ C(B))⊕ (C(A)⊥ ∩ C(B)⊥)

• The −1 eigenspace is (C(A)∩ C(B)⊥)⊕ (C(A)⊥ ∩ C(B)). Moreover, C(A)⊥ ∩ C(B) =
B(kerA†B)

• On the orthogonal complement of the above subspaces, U has eigenvalues e2iθj and
e−2iθj for j ∈ [l]

Lemma 5 (Effective Spectral Gap Lemma [21]). Let PΘ be the orthogonal projection onto
the span of all eigenvectors of U with eigenvalues eiθ such that |θ| ≤ Θ. Then, for any
vector |w〉 in the kernel of ΠA, we have

‖PΘΠB |w〉 ‖ ≤
Θ

2
‖ |w〉 ‖

We will also require the following tools, which have been used many times elsewhere in
quantum algorithm design:

Theorem 5 (Phase estimation [19][13]). Given a unitary U as a black box, there exists a
quantum algorithm that, given an eigenvector |ψ〉 of U with eigenvalue eiφ, outputs a real
number w such that |w − φ| ≤ δ with probability at least 9/10. The algorithm uses O(1/δ)
controlled applications of U and 1

δpolylog(1/δ) other elementary operations.

Theorem 6 (Reflection using phase estimation [22]). Let U ∈ U(n) have a unique eigen-
vector with eigenvalue 1, and let the smallest non-zero phase of U be σmin. Then for
any integer k there exists a quantum circuit R that acts on O(log2 n) + ks qubits, where

s = log2

(
1

σmin

)
+O(1), such that:
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• R uses the controlled-U operator O(k2s) times and contains O(ks2) other gates.

• If |ψ〉 is the unique 1-eigenvector of U , then R |ψ〉 |0ks〉 = |ψ〉 |0ks〉.

• If |φ〉 lies in the subspace orthogonal to |ψ〉, then ‖(R+ I) |φ〉 |0ks〉 ‖ = O(1/2k).

The latter point of Theorem 6 tells us that the circuit R implements a reflection about
the eigenvalue-1 eigenspace of U up to some precision 2−k, determined by the value of k. In
particular, if U has a constant spectral gap, then s = O(1) and the number of calls to the
controlled-U operator is O(k), and depends only on our desired precision for the circuit.

C.2 Implementing Span Programs

In this section we outline a general method, due to Belovs and Reichardt [8], for imple-
menting span programs in a time-efficient manner, and apply it to the span program for
evaluating s-t connectivity. Before we do so, however, it will be useful to describe a quan-
tum query algorithm for evaluating span programs and, in doing so, note an interesting
connection between span programs and quantum query complexity:

Theorem 7 (Reichardt [25]). For any (partial) boolean function f : D → {0, 1}, there is
a quantum algorithm that requires O(wsize(P,D)) queries to a quantum oracle for the bits
of x, where P is any span program for which fP agrees with f on the domain D.

Proof. (From [8], included for completeness)
The quantum algorithm works in the space Rm+1 with orthonormal basis elements

{|j〉}mj=0. Let I(x) = {j : vj ∈ M(x)} be the indices corresponding to the available input

vectors, and let W0, W1 and W =
√
W0W1 be, respectively, the negative witness size,

positive witness size, and witness size of P.
We perform phase estimation on the operator U = (2Λ − I)(2Πx − I), the product of

two reflections about the images of the projection operators Λ and Πx, which are defined as
follows: Let Λ : Rm+1 → Rm+1 be the orthogonal projection onto the kernel of M̃ , where:

M̃ =
1

α
|τ〉 〈0| ⊕M =

1

α
|τ〉 〈0|+

m∑
j=1

|vj〉 〈j| for some α ∈ R yet to be defined,

and let Πx : Rm+1 → Rm+1 be defined by Πx = |0〉 〈0|+
∑
j∈I(x)

|j〉 〈j|

The algorithm accepts x if and only if, on the input of |0〉, phase estimation on U , with
precision Θ, outputs a phase of zero (corresponding to an eigenvalue of 1). We need to find
values of α and Θ for which this procedure works.
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First we consider the positive case. Take an optimal positive witness |w〉 =
∑

j wj |j〉,
and use it to construct an eigenvalue 1 eigenvector of U : let |u〉 = α |0〉 − |w〉 = α |0〉 −∑

j wj |j〉. Since |u〉 consists only of |0〉 and the positive witness vector, we have Πx |u〉 = |u〉
and M̃ |u〉 = |τ〉−|τ〉 = 0. So |u〉 is in the kernel of M̃ , which implies that Λ |u〉 = |u〉. Thus,
|u〉 is an eigenvalue 1 eigenvector of U , and phase estimation on |u〉 will output a phase
of zero with certainty. Therefore, the probability of phase estimation on |0〉 outputting a
phase of zero depends on the overlap of |0〉 with |u〉, and is at least:

| 〈0|u〉 |2

‖ |u〉 ‖2
=

α2

α2 +
∑
w2
j

≥ 1

1 +W1/α2
. (2)

Therefore, if we choose α = C
√
W1, for some constant C, we can increase the value of

C to make this probability arbitrarily close to 1. In particular, we can ensure that CW > 1
Now consider the negative case. Let |w′〉 be an optimal negative witness, and define

|v〉 = αM̃ † |w′〉. Since |w′〉 is a negative witness, we have 〈w′|τ〉 = 1 and so |v〉 = |0〉 +
αM † |w′〉. So Πx |v〉 = |0〉 and

‖ |v〉 ‖2 ≤ 1 + α2W0 = 1 + C2W1W0 = 1 + C2W 2 ≤ 2C2W 2 (3)

since the negative witness size W0 is defined by W0 = ‖M † |w′〉 ‖2, and the final inequality
follows from the restriction that CW > 1.

Let Θ be the precision of the phase estimation algorithm, and let PΘ be the projection
operators onto the space of eigenvectors of U of phase less than Θ. So the probability that
phase estimation outputs a phase of zero on the input |0〉 is ‖PΘ |0〉 ‖2 = ‖PΘΠx |v〉 ‖2.

Using the Effective Spectral Gap Lemma (Lemma 5), we have that ‖PΘΠx |v〉 ‖ ≤
Θ
2 ‖ |v〉 ‖, as long as Λ |v〉 = 0. This last condition is easy to verify, since |v〉 lies in the

image of M̃ †. So, we have

‖PΘ |0〉 ‖ = ‖PΘΠx |v〉 ‖ ≤
Θ

2
‖ |v〉 ‖ ≤ ΘCW (4)

and we can choose the precision to be Θ = 1/C ′W , for some constant C ′. Therefore, we
can choose a large value of C ′ such that the probability ‖PΘ |0〉 ‖2 is arbitrarily small.

The phase estimation algorithm on U with precision Θ requires O(1/Θ) queries to U ,
and each query to U requires only one query to the oracle for x. Therefore the algorithm
evaluates the span program on an input x with O(1/Θ) = O(W ) queries to x.

The above algorithm defines a unitary operator U = (2Λ − I)(2Πx − I), which is the
product of two reflections - the first, RΠ := (2Πx − I), is an input dependent reflection,
and the second, RΛ := (2Λ − I), is an input independent reflection. Since the algorithm
requires repeated applications of this operator, the algorithm may only be implemented
time-efficiently if we can implement both RΠ and RΛ time-efficiently. RΠ is generally quite
straightforward to implement - since all it requires is some efficient map from the bits of
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the input to the corresponding input vectors. However, the implementation of RΛ is more
subtle, and will be the main focus of the rest of this section.

C.2.1 Implementing RΠ and RΛ

We begin by describing a general approach for implementing the two reflections, which is
due to Belovs and Reichardt [8].

We consider the d × (m + 1) matrix M̃ = 1
α |τ〉 〈0| +

∑m
j=1 |vj〉 〈j| as the biadjacency

matrix for a bipartite graph on d+m+1 vertices, and run a Szegedy-type quantum walk [33]
on it. The structure of this graph is as follows: we have two disjoint sets of vertices – one
consisting of a vertex for every basis vector in our vector space, and one consisting of a
vertex for the target vector plus every input vector in the span program. An edge exists
between two vertices when a basis vector makes up some non-zero component of one or
more of the input/target vectors.

To perform a quantum walk, we must factor M into two sets of unit vectors: vectors
|ai〉 ∈ Rm for each row i ∈ [d] and vectors |bj〉 ∈ Rd for each column j ∈ [m], so that
〈i|bj〉 〈ai|j〉 = M ′ij , where M ′ differs from M only by a rescaling of its rows, since rescaling
the rows of a matrix does not affect its nullspace.

Given such a factorisation, let A =
∑d

i=1(|i〉 ⊗ |ai〉) 〈i| and B =
∑m

j=1(|bj〉 ⊗ |j〉) 〈j|, so

that A†B = M ′. Let RA and RB be the reflections about the column spaces of A and B,
respectively.

Embed H into H̃ = Rd ⊗ Rm using the isometry B. Then RΛ can be implemented on
B(H) as the reflection about the −1 eigenspace of RBRA. By Lemma 4, this eigenspace
equals (C(A) ∩ C(B)⊥) ⊕ (C(A)⊥ ∩ C(B)), which is equal to B(kerA†B) = B(kerM) plus
a part that is orthogonal to C(B) and is therefore irrelevant. The reflection about the −1
eigenspace of RBRA can then be implemented using phase estimation, which will give us
a reflection about the kernel of M in the larger space H̃, whose basis is given by |i〉 ⊗ |j〉
for i ∈ [d], j ∈ [m]. RΠ may be implemented by reflections controlled by j - i.e. given a
state in H̃, multiply the phase by −1 if |vj〉 is an unavailable input vector.

Intuitively, A and B are matrices that give us the local spaces for each vertex |ai〉 and
|bj〉, respectively. By local space, we are referring to the neighbours of a vertex in the
graph described by M . Therefore, the reflection about the column spaces of A and B are
equivalent to reflections about the local spaces |ai〉 and |bj〉, controlled by columns i and
j, respectively.

The efficiency of the algorithm thus depends on two factors:

1. The implementation costs of RA and RB. Since these reflections decompose into local
reflections, they can be easier to implement than RΛ.

2. The spectral gap around the −1 eigenvalue of RBRA, on which the efficiency of the
phase estimation sub-routine will depend. By Lemma 4, this gap is determined by
the gap of A†B = M ′ around singular value 0.
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Since, for any given span program, M ′ describes a bipartite graph, the reflections RA
and RB can usually be implemented efficiently. To calculate the properties of the spectral
gap around singular value 0 of M ′, we may calculate the spectral gap around the eigenvalue
0 of ∆ := M ′M ′† (since the singular values of M ′ are the square roots of the eigenvalues
of ∆).

We use phase estimation to perform the reflection about the −1 eigenspace of RBRA.
If the smallest non-zero singular value of M ′ is σmin, then by Theorem 6 this will require
O((1/σmin) log(1/δ)) controlled applications ofRA andRB, plusO(log(1/δ)polylog(1/σmin))
other elementary operations, where δ is the precision of the circuit. Thus, if RA takes time
TA and RB takes time TB, the entire process will require time Õ(TA+TB

σmin
) for constant δ.

If M ′ has a constant spectral gap (i.e. σmin = Ω(1)), the time required to implement the
span program depends only on the complexity of the reflections RA and RB.

C.3 Implementation of the s-t connectivity span program

In this section we will apply the general approach described above to the span program
for s-t connectivity as described in section B. Recall that we are given as input a graph
G = (V,E), and the indices of two vertices s and t from V , and we want to know whether
or not there is a path from s to t in G. We will provide a proof for Theorem 1, which we
restate here for convenience:

Theorem 1. [Combination of Theorems 3 and 9 from [8]] Consider the st-connectivity
problem on a graph G given by its adjacency matrix. Assume there is a promise that if
s and t are connected by a path, then they are connected by a path of length at most d.
Then there exists a bounded-error quantum algorithm that determines whether s and t are
connected in Õ(n

√
d) time and uses O(log n) bits and qubits of storage, and which fails

with probability at most 1/10.

Proof. In order to make the implementation straightforward, we modify the span program
from section B slightly. We assume that s and t are not directly connected by an edge
– a fact that can be checked in O(n) time beforehand, if necessary. Then, alongside the
normal scaled-down target vector |τ̃〉 = 1

α(|t〉 − |s〉), we introduce a ‘never-available’ input

vector |σ̃〉 =
√

1− 1/α2(|t〉 − |s〉). We may assume that α = C1

√
W1 ≥ 1. To introduce

a never-available input vector, we introduce a dummy input bit that is always set to zero,
and associate the input vector with it. It is easy to verify that this modification changes
neither the behaviour of the span program nor its witness size.

Define the set of input vectors (not including the one corresponding to an edge between s
and t)

Min := {|vxy〉 := |y〉 − |x〉 : x 6= y ∈ V } \ {|vst〉},

and let {|xy〉 : |vxy〉 ∈ Min} ∪ {|st〉 , |st〉} be an orthonormal basis for the set of indices of
vectors in Min, with the extra vectors |st〉 and |st〉 indexing the scaled target vector |τ̃〉
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and the ‘never-available’ input vector |σ̃〉, respectively. Let

M̃ =
1

α
|τ〉 〈st|+

√
1− 1/α2 |σ〉 〈st|+

∑
|vxy〉∈Min

|vxy〉 〈xy| .

Now we define some vectors |ax〉 for each x ∈ V :

• For x /∈ {s, t}, |ax〉 = 1√
n−1

∑
y∈V \{x} |xy〉

• For x ∈ {s, t}, |ax〉 = 1
α
√
n−1
|st〉+

√
1−1/α2

n−1 |st〉+ 1√
n−1

∑
y∈V \{s,t} |xy〉

and some vectors |bij〉 for each input vector |vij〉 ∈Min:

• |bij〉 = 1√
2
(|j〉 − |i〉)

Then these |ax〉 and |bij〉 give a factorisation of the matrix M̃ , up to a rescaling of the
rows. That is, for x /∈ {s, t},

〈ax|ij〉 〈x|bij〉 =
1√

2
√
n− 1

 ∑
y∈V \{x}

〈xy|ij〉

 〈x| (|j〉 − |i〉)
=

1√
2(n− 1)

〈x|vij〉

The cases x ∈ {s, t} can be verified separately, and give the desired final result, implying
that M ′ = 1√

2(n−1)
M .

Now we may define A =
∑

u∈V (|u〉 ⊗ |au〉) 〈u| and B =
∑

u,v∈V (|buv〉 ⊗ |uv〉) 〈uv|, and
proceed as in section C.2.1 – i.e. we can now implement the reflection RΛ by using phase
estimation to reflect about the -1 eigenspace of RBRA, where RB and RA are the reflections
about C(B) and C(A), respectively. This reflection is independent of the input – that is,
we reflect about the null-space of the biadjacency matrix given by the basis vectors and
the set of (all possible) input vectors, which is formally described above. Our approach is
then to alternate reflections about this space and the space of all available input vectors,
with the latter being achieved by the reflection operator RΠ. We can implement RΠ by
querying the input graph, and multiplying by a phase of −1 if the edge corresponding to
a given input vector is not present.

Spectral gap of M ′ – Since we use phase estimation to implement the reflection about
the −1 eigenspace of RBRA, the efficiency of the algorithm will depend upon the spectral
gap around the −1 eigenvalue of RBRA. By Lemma 4, this gap is determined by the
spectral gap around singular value 0 of A†B = M ′. The non-zero singular values of M ′
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are the square roots of the non-zero eigenvalues of ∆ := M ′M ′†. Recall that m = |Min|
gives the total number of input vectors in the span program, and that M ′ = 1√

2(n−1)
M =

1√
2(n−1)

∑
i∈V

∑
j∈[m] 〈i|vj〉 |i〉 〈j|, where each |vj〉 corresponds to an ‘ordinary’ input vector

of the form |y〉−|x〉 for some x 6= y ∈ V , or to one of the special input vectors τ̃ = 1
α(|t〉−|s〉)

or σ̃ =
√

1− 1
α2 (|t〉 − |s〉). We have that

M ′M ′† =
∑
i,i′∈V

 1

2(n− 1)

∑
j∈[m]

〈i|vj〉 〈vj |i′〉

 |i〉 〈i′| ,
and therefore we can compute ∆ by inspecting the individual values M ′M ′†ii′ for different
cases of i and i′:

• If i /∈ {s, t}, and/or i′ /∈ {s, t}, then we consider two cases:

1. i = i′: In this case, the term inside the brackets contributes a value of n−1
2(n−1) = 1

2

to ∆ii′ , since each vertex i has degree (n− 1). Alternatively, we note that each
basis vector has (n − 1) input vectors with which it has inner product 1, and
thus

∑
j | 〈i|vj〉 |2 = (n− 1).

2. i 6= i′: In this case, there is exactly one edge between vertices i and i′, which
contributes a term of − 1

2(n−1) to ∆ii′ .

• If i, i′ ∈ {s, t}, the situation is slightly different, but the result is the same. Again,
we will deal with two cases:

1. i = i′: In this case, vertex i has n neighbours. (n − 2) of them correspond
to ordinary edges, whilst the remaining two correspond to the scaled target
vector |τ̃〉, and the never-available input vector |σ̃〉. Then | 〈i|τ̃〉 |2 = 1/α2 and
| 〈i|σ̃〉 |2 = (1 − 1/α2). So the term inside the brackets contributes a value of
(1 + (n− 2) + 1/α2 − 1/α2)/2(n− 1) = 1/2 to ∆ii.

2. i 6= i′: In this case, there are two edges between vertices i and i′ (since one must
be s, and the other t). The first edge, |τ̃〉, contributes a value of −1/α2, and the
other, |σ̃〉, contributes a value of (1/α2 − 1). Together, they contribute a term
of − 1

2(n−1) to ∆ii′ .

The result is an n×n square matrix, whose diagonal elements are 1/2, and off-diagonal
elements are −1/2(n − 1). By taking out a factor of 1/2(n − 1), we obtain the Laplacian
matrix for the complete graph on n vertices, which has the form nIn − Jn, where In is the
n×n identity matrix and Jn the n×n all-ones matrix. This Laplacian has a single eigenvalue
of 0, and (n − 1) eigenvalues of n. Therefore, the eigenvalues of ∆ are 0 (multiplicity 1)
and n/2(n− 1) (multiplicity (n− 1)), and thus the non-zero singular values of M ′ are all
at least 1/

√
2, giving us a constant spectral gap as desired.
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Implementing RA and RB – Now it remains to show that we can implement the
reflection operators RA and RB efficiently. Since these reflections decompose into local
reflections, it suffices to describe operators that implement local reflections about each |au〉
and |buv〉.

Recall that the algorithm works in the Hilbert space spanned by the vectors |i〉 ⊗ |j〉,
where i varies over the vertices in the graph, and j over the input vectors and the target
vector. We will describe the implementation of RA first. For all u /∈ {s, t}, |u〉 ⊗ |au〉 is
the uniform superposition of the states {|u〉 ⊗ |uv〉 : v ∈ V \ {u}}, and so the reflection is
a Grover diffusion operator.

For u = s, the transformation is slightly more complex. Let F be the Fourier transform
on the space spanned by {|s〉 ⊗ |sv〉 : v ∈ V \ {s}} that maps |s〉 ⊗ |st〉 to the uniform
superposition; let K be a unitary on the space spanned by {|s〉⊗ |st〉 , |s〉⊗ |st〉} that maps

|s〉 ⊗ |st〉 to 1
α(|s〉 ⊗ |st〉) +

√
1− 1

α2 (|s〉 ⊗ |st〉); and let L be a unitary that multiplies the

phase of all states except |s〉 ⊗ |st〉 by -1. Then the local reflection can be implemented by
FKLK−1F−1. Intuitively, this is still similar to the Grover diffusion operator: the unitary
K acts to spread out the amplitude on the st edge between the target vector |τ̃〉 and the
input vector |σ̃〉, and when combined with F it creates the desired superposition over edges
adjacent to s. Finally, the unitary L performs the reflection, analogously to a standard
diffusion operator. A very similar operation works for u = t.

The implementation of RB is relatively straightforward. We apply the negated swap
to all pairs (|u〉 ⊗ |uv〉 , |v〉 ⊗ |uv〉), which maps a pair (|x〉 , |y〉) 7→ (− |y〉 ,− |x〉), for some
arbitrary states |x〉 , |y〉. This can be achieved in logarithmic time.

To implement RΠ, the algorithm checks, for each state |i〉 ⊗ |j〉, whether input vector
j is available by querying the input oracle for the presence of edge j. If it is available, it
does nothing, otherwise it negates the phase of the state.

The states |i〉 ⊗ |j〉 can be stored using a logarithmic number of qubits. In particular,
for a graph with n vertices, we require O(log n) qubits.

There may be cases where we do not know an upper bound on the length of the path
between s and t ahead of time. In such situations, we may want to ‘guess’ an upper bound
on the length of the path. Provided that our guess is only wrong by at most a constant
factor, the s-t connectivity algorithm of Theorem 1 will still fail with probability at most
1/10, which follows directly from the statement of Theorem 1. In the case that our guess
is smaller than the actual length of the path (by more than a constant factor), then the
algorithm may fail with a high probability.
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D Diffusion Operators for Quantum Walk

Here we give details for implementing the diffusion operators of the quantum walk used in
Section 7.4. In particular, we provide a proof for Lemma 2, which we restate below.

Lemma 2. RA and RB can be implemented using O(
√
dm) queries to the adjacency array,

and polylog(n) additional operations per query.

Proof. We can query the adjacency array of each vertex in superposition. In particular, let

|ψv〉 =
1√
dv

∑
i∈[dv ]

|i〉 |fv(i)〉

be the state that results from querying the adjacency array of vertex v in superposition.
Recall that we define |φv〉 :=

∑
i∈[dv ] |fv(i)〉. We want to produce |φv〉 from the state |ψv〉.

Let |+v〉 := 1√
dv

∑
i∈[dv ] |i〉. If we perform the {|+v〉 〈+v| , I−|+v〉 〈+v|}measurement on

the first register, then the first outcome is obtained with probability 1/dv, and in this case
the second register collapses to |φv〉. We want to maximise the probability of measuring
|+v〉 in the first register, in order to produce the desired state in the second register.

In fact, we can increase the probability of measuring |+v〉 to certainty using exact
amplitude amplification, which also gives us the desired state in the second register. Define

|Φv〉 := |+v〉 |φv〉 ,

and two projectors
P+ := |+v〉 〈+v| ⊗ I

and
Pψ := |ψv〉 〈ψv| .

We see that

P+ |ψv〉 =
1√
dv

∑
i∈[dv ]

(|+v〉 〈+v|i〉 ⊗ |fv(i)〉)

=
1√
dv

∑
i∈[dv ]

(
1√
dv
|+v〉 ⊗ |fv(i)〉

)
=

1√
dv
|+v〉 ⊗

1√
dv

∑
i∈[dv ]

|fv(i)〉

=
1√
dv
|Φv〉

= |Φv〉 〈Φv|ψv〉
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and

P+ |Φv〉 = |+v〉 〈+v|+v〉 ⊗
1√
dv

∑
i∈[dv ]

|fv(i)〉

= |+v〉 ⊗
1√
dv

∑
i∈[dv ]

|fv(i)〉

= |+v〉 ⊗ |φv〉 = |Φv〉
= |Φv〉 〈Φv|Φv〉

That is, in the subspace spanned by {|ψv〉 , |Φv〉}, the projector P+ acts as the projector
|Φv〉 〈Φv|. We can define two operators R+ = I−2P+ and Rψ = I−2Pψ, which, taking into
account the observation noted above, are inversions about the spaces spanned by |Φv〉 and
|ψv〉, respectively (within the subspace spanned by {|ψv〉 , |Φv〉}). Thus, by alternating the
two reflections, we can use the exact variant of amplitude amplification in the standard way
to produce the state |Φv〉 from the state |ψv〉. In particular, we apply Qm := (RψR+)m to
the initial state |ψv〉 for some integer m, followed by one application of a modified version
of Q which performs smaller rotations in order to make the algorithm exact. Since Q pre-
serves the subspace spanned by {|ψv〉 , |Φv〉}, then (by the arguments above) the algorithm
will produce the desired state |Φv〉. We have that | 〈ψv|Φv〉 |2 = 1

dv
, and so we can choose

an m = Θ(
√
dv) to obtain the state |Φv〉 in Θ(

√
dv) time [11].

In other words, we can produce a state |v〉 |+v〉 |φv〉 from an initial state |v〉 |0〉 |0〉 in Θ(
√
dv)

time. We can then uncompute the value in the second register, giving us |v〉 |φv〉 |0〉 (where
we have swapped the final two registers for clarity). Let U be the operator that maps
the state |v〉 |0〉 |0〉 to |v〉 |φv〉 |0〉. Then the diffusion operator Dv may be implemented by
US0U

−1, where S0 changes the sign of the amplitude if and only if the final two registers
are in the all zero state. That is, it performs the map S0 |v〉 |0〉 |0〉 7→ − |v〉 |0〉 |0〉 for all
v ∈ A. More precisely, it implements the reflection

S0 = I − 2
∑
v∈A
|v〉 〈v| ⊗ |0〉 〈0| ⊗ |0〉 〈0| .

Therefore,

US0U
−1 = U(I − 2

∑
v∈A
|v〉 〈v| ⊗ |0〉 〈0| ⊗ |0〉 〈0|)U−1

= I − 2
∑
v∈A
|v〉 〈v| ⊗ |φv〉 〈φv| ⊗ |0〉 〈0|

= RA

by the definition of RA.
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Since we are applying U to all vertices in superposition, it will be necessary to clarify
how the amplitude amplification part of U can be applied to a superposition over vertices.
In order to produce the desired state for some vertex v, amplitude amplification needs to
be performed for a number of iterations that depends upon the degree of that vertex. Since
different vertices will have different degrees, the number of iterations required will vary be-
tween vertices. To address this, we can define an algorithm AA(v, dv, dm), where dm is the
maximum degree of any vertex. The algorithm will perform amplitude amplification for the
correct number of iterations for vertex v, and then will do nothing (i.e. apply the identity
operator) for the remaining iterations. In this way, the amplitude amplification routines
stop and wait for the vertex with the largest degree, and thus the amplitude amplification
step can be applied to all vertices in superposition, requiring time O(

√
dm).

Since the diffusion operators required for the vertices s and t are different, it is worth
discussing their implementations separately. The diffusion operator for vertex t is easy to
implement, since it is the identity. Vertex s has a more complicated operator; however,
all we need to change is the operation that maps the state |s〉 |0〉 |0〉 to the state |s〉 |ψs〉.
For all v /∈ {s, t}, we simply produce a uniform superposition over the neighbours of v.
For s, as discussed above, we have an additional term corresponding to an additional edge
incident to vertex s, and therefore we need to be able to produce the state

|+s〉 =
1√

1 + dsCd
|ds〉+

√
Cd

1 + dsCd

ds−1∑
i=0

|i〉

in the second register, which will be used to produce |φs〉. In order to do this, let K be
a unitary operator on the space spanned by {|0〉 , |ds〉} that maps |0〉 to 1√

1+dsCd
|ds〉 +√

dsCd
1+dsCd

|0〉. Then let F be the Fourier transform on the space spanned by {|i〉 : i ∈
{0..ds − 1}} that maps |0〉 to the uniform superposition. Then the required state can be
produced by applying FK to the state |0〉. We can then proceed as in the more general
case to implement the local reflection.

In general, the time taken to implement the operators RA and RB will depend on the
degrees of the vertices in the graph. In particular, if the maximum degree of any one ver-
tex is dm, then we will have to use at most O(

√
dm) iterations of amplitude amplification in

order to implement the local reflections in parallel. Therefore O(
√
dm) queries are required

to implement RARB, and the time complexity is the same up to polylog factors in n.
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[14] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query complexity of some
graph problems. In Automata, Languages and Programming, pages 481–493. Springer,
2004. arXiv:quant-ph/0401091.

34



[15] V. Giovannetti, S. Lloyd, and L. Maccone. Quantum random access memory. Physical
review letters, 100(16):160501, 2008. arXiv:0708.1879.

[16] P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. In
Automata, Languages and Programming, pages 291–299. Springer, 2003.

[17] S. Jeffery and S. Kimmel. Nand-trees, average choice complexity, and effective resis-
tance. arXiv:1511.02235, 2015.

[18] M. Karchmer and A. Wigderson. On Span Programs. In Structure in Complexity
Theory Conference, pages 102–111, 1993.

[19] A. Y. Kitaev. Quantum measurements and the Abelian Stabilizer Problem. 1995.
arXiv:quant-ph/9511026.

[20] F. Le Gall. Improved quantum algorithm for triangle finding via combinatorial ar-
guments. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 216–225. IEEE, 2014. arXiv:1407.0085.

[21] T. Lee, R. Mittal, B. Reichardt, R. Špalek, and M. Szegedy. Quantum query com-
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