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We show that measuring pairs of qubits in the Bell basis can be used to obtain a simple quantum
algorithm for efficiently identifying an unknown stabilizer state of n qubits. The algorithm uses
O(n) copies of the input state and fails with exponentially small probability.

It is well-known and follows from Holevo’s theorem [7]
that approximately determining an arbitrary quantum
state |ψ〉 of n qubits requires exponentially many (in n)
copies of |ψ〉. One way of circumventing this problem is
to relax the notion of what it means to determine |ψ〉
(e.g. by requiring only that we are able to predict the
result of “most” measurements on |ψ〉, according to some
probability distribution [1]); another way is to restrict the
class of states to be determined to some class which can
be described efficiently. In this setting, we are given a
quantum system that is promised to be in a state picked
from some family of quantum states, and are asked to
determine its state, exactly or approximately.

One example where efficient identification can be
achieved is the class of states well approximated by a
matrix product state [4]. Another example, on which we
will focus here, is the class of stabilizer states. Aaronson
and Gottesman described an efficient procedure for iden-
tifying an unknown stabilizer state |ψ〉 of n qubits [3].
One variant of their algorithm uses O(n2) copies of |ψ〉.
In this variant, all measurements are performed on sin-
gle copies of |ψ〉. Another variant uses only O(n) copies
of |ψ〉, but is based on collective measurements across
all these copies. This second algorithm is information-
theoretically optimal: as there are 2Θ(n2) stabilizer states
on n qubits [2], identifying |ψ〉 requires Ω(n) copies of |ψ〉
by Holevo’s theorem [7].

In related work, Low has shown that an unknown ele-
ment U of the Clifford group on n qubits can be identified
with O(n2) uses of U , or even only O(n) if U† is also avail-
able [8]. Rocchetto has shown that an unknown stabilizer
state can be learned efficiently in the PAC model [9].

Here we will prove the following result:

Theorem 1. There is a quantum algorithm which iden-
tifies an unknown stabilizer state |ψ〉 of n qubits given
access to O(n) copies of |ψ〉. The algorithm makes col-
lective measurements across at most two copies of |ψ〉
at a time, runs in time O(n3) and fails with probability
exponentially small in n.

The number of copies of |ψ〉 used by this algorithm thus
matches that of Aaronson and Gottesman’s collective-
measurement algorithm [3], but the algorithm acts on a
smaller number of copies at a time. In addition, the mea-
surements made by the algorithm across pairs of copies
of |ψ〉 are simple to implement: they are based on mea-

suring pairs of corresponding qubits of |ψ〉⊗2
in the Bell

basis. This is reminiscent of the algorithm of [6] for test-
ing product states, where the measurement performed
across pairs of qubits was the swap test.

An alternative algorithm for identifying an unknown
graph state (a subclass of stabilizer states) on n qubits us-
ing O(n) copies has been presented in independent work
of Zhao, Pérez-Delgado and Fitzsimons [12]. Their algo-
rithm has some structural similarities to the algorithm of
the present paper.

Preliminaries

We will use the matrices

σ00 :=

(
1 0
0 1

)
, σ01 :=

(
0 1
1 0

)
, σ10 :=

(
1 0
0 −1

)
,

σ11 := σ10σ01 =

(
0 1
−1 0

)
,

which are the Pauli matrices up to applying −i to σ11,
and the Bell basis, i.e. the ordered basis of C4 which we
define by

|σ00〉 :=
1√
2

(|00〉+ |11〉), |σ01〉 :=
1√
2

(|01〉+ |10〉),

|σ10〉 :=
1√
2

(|00〉 − |11〉), |σ11〉 :=
1√
2

(|01〉 − |10〉).

The notation is supposed to highlight the fact that
|σi〉 = vec(σi)/

√
2, where vec is the linear map de-

fined by vec(|x〉〈y|) = |x〉|y〉 for computational basis
states x, y. The vec operator preserves inner products:
〈vec(A)| vec(B)〉 = trA†B. For s ∈ {0, 1}2n, we write
σs := σs1s2⊗· · ·⊗σs2n−1s2n , |σs〉 := |σs1s2〉 . . .

∣∣σs2n−1s2n

〉
.

Up to multiplying by −1, σsσt = σs⊕t.
Measurement in the Bell basis can be implemented by

applying the circuit

• H

and measuring in the computational basis. Given a
pure state of 2n qubits divided into systems A1, . . . , An,
B1, . . . , Bn, we call the operation of measuring each pair
AiBi of qubits in the Bell basis Bell sampling. Each such
measurement returns a 2n-bit string.

For any state |ψ〉, let |ψ∗〉 denote the complex conju-
gate (taken in the computational basis).
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Lemma 2. Let |ψ〉 be a state of n qubits. Bell sampling

on |ψ〉⊗2
returns outcome r with probability

|〈ψ|σr|ψ∗〉|2

2n
.

Proof. We have |ψ〉|ψ〉 = vec(|ψ〉〈ψ∗|), so |〈σr|ψ〉|ψ〉|2 =
2−n| trσ†r|ψ〉〈ψ∗||2 = 2−n|〈ψ|σr|ψ∗〉|2.

LEARNING STABILIZER STATES

We now show that Bell sampling can be used to learn
stabilizer states efficiently. By a result of [5] (see [11]
for an alternative proof), up to an overall phase every
stabilizer state |ψ〉 can be written in the form

|ψ〉 =
1√
|A|

∑
x∈A

i`(x)(−1)q(x)|x〉,

where A is an affine subspace of Fn
2 , and `, q : {0, 1}n →

{0, 1} are linear and quadratic (respectively) polynomials
over F2. As ` is linear, `(x) = s · x for some s ∈ {0, 1}n,
so we have i`(x) =

∏
k∈S i

xk for some S ⊆ [n]. Hence

|ψ∗〉 = σ⊗S10 |ψ〉.

If we perform Bell sampling on |ψ〉⊗2
, by Lemma 2 we

receive outcome r with probability

|〈ψ|σr|ψ∗〉|2

2n
=
|〈ψ|σrσ⊗S10 |ψ〉|2

2n
. (1)

Any stabilizer state |ψ〉 is uniquely specified by a com-
muting subgroup G of Pauli matrices M (with poten-
tially additional overall phases ±1) such that |G| = 2n,
M |ψ〉 = |ψ〉 for all M ∈ G, and 〈ψ|M |ψ〉 = 0 for all
Pauli matrices M /∈ G. Let T denote the set of strings
t ∈ {0, 1}2n such that σt ∈ G, up to a phase. Then T is
an n-dimensional linear subspace of F2n

2 . Determining T
suffices to uniquely determine |ψ〉: although T does not
contain information about phases, once we have found
a basis for T , we can measure |ψ〉 in the eigenbasis of
each corresponding Pauli matrix M to decide whether
M |ψ〉 = |ψ〉 or M |ψ〉 = −|ψ〉.

By eqn. (1), Bell sampling gives an outcome r which is
uniformly distributed on the set {t⊕ s : t ∈ T} for some
s ∈ {0, 1}2n. Thus, for any two such outcomes r1, r2,
the sum r1 ⊕ r2 is uniformly distributed in T . In order
to find a basis for T , we can therefore produce k + 1
Bell samples r0, r1, . . . , rk, for some k, and consider the
uniformly random elements of T given by r1 ⊕ r0, r2 ⊕
r0, . . . , rk ⊕ r0. If the dimension of the subspace of F2n
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spanned by these vectors is n, any basis of this subspace
is a basis for T .

We give an explicit description of this algorithm as
Algorithm 1 (boxed). The algorithm uses 5n+2 copies of

|ψ〉. The time complexity of the algorithm is dominated
by the basis-determination step, which can be achieved
using Gaussian elimination in time O(n3); technically,
this can be improved to O(nω), where ω < 2.373 is the
matrix multiplication exponent. Note that any algorithm
for learning a stabilizer state requires time Ω(n2) just to
write the output.

Algorithm 1 (Learning stabilizer states).

1. Set S = ∅.
2. Create two copies of |ψ〉 and perform Bell sam-

pling, obtaining outcome r0.

3. Repeat the following 2n times:

(a) Create two copies of |ψ〉 and perform Bell
sampling, obtaining outcome r.

(b) Add r ⊕ r0 to S.

4. Determine a basis for S; call this basis B.

5. For each element of B, measure a copy of |ψ〉 in the
eigenbasis of the corresponding Pauli matrix M to
determine whether M |ψ〉 = |ψ〉 or M |ψ〉 = −|ψ〉.

The algorithm fails (i.e. does not identify |ψ〉) if each
of the 2n samples r ⊕ r0 lies in a subspace of T of di-
mension at most n−1. The probability that the samples
are all contained in any one such subspace is 2−2n; by a
union bound over all subspaces of dimension n − 1, the
algorithm fails with probability at most 2−n.

Algorithm 1 can be seen as a generalisation of a result
of Rötteler [10] which gives an O(n)-query algorithm for
learning functions f : {0, 1}n → {0, 1} which are polyno-
mials of degree 2 over F2. The algorithm of [10] works
by producing states of the form

|ψ〉 =
1√
2n

∑
x∈{0,1}n

(−1)f(x)|x〉,

and then proceeds in a similar way to Algorithm 1 (al-
though it is presented differently).
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