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Branch-and-bound is a widely used technique for solving combinatorial optimisation problems where one has
access to two procedures: a branching procedure that splits a set of potential solutions into subsets, and a cost
procedure that determines a lower bound on the cost of any solution in a given subset. Here we describe a quan-
tum algorithm that can accelerate classical branch-and-bound algorithms near-quadratically in a very general
setting. We show that the quantum algorithm can find exact ground states for most instances of the Sherrington-
Kirkpatrick model in time O(20.226n), which is substantially more efficient than Grover’s algorithm.

Quantum computers can solve certain problems, such as
simulation of quantum-mechanical systems [1] and integer
factorisation [2], exponentially faster than the best classical al-
gorithms known. As well as these special-purpose algorithms,
there are general-purpose quantum algorithms which can out-
perform their classical counterparts more modestly for a wide
range of problems within the domains of constraint satisfac-
tion and optimisation [3]. A famous example is Grover’s al-
gorithm for unstructured search [4], which can be applied to
find the minimal value in a set of size N with O(

√
N) eval-

uations of values in the set [5]. This algorithm achieves a
quadratic speedup over exhaustive classical search. However,
for many problems encountered in practice, there are more
efficient classical algorithms than exhaustive search, which
take advantage of the structure of the problem. This can
apply to NP-complete problems, which are expected not to
have polynomial-time algorithms, yet which can sometimes
be solved surprisingly efficiently in practice.

One of the most successful general approaches to solving
constrained optimisation problems is known as branch-and-
bound. This approach can be applied to problems where the
goal is to find a minimal-cost valid solution, in a setting where
one has access to two functions: a bounding function cost
that, for a given subset of the set of possible solutions, returns
a lower bound on the cost of any valid solution in that sub-
set; and a branching rule branch to be applied if a subset
of possible solutions cannot yet be ruled out, which will di-
vide that subset into two or more “live” subsets to be explored
in later iterations. Then the branch-and-bound approach ex-
plores subsets of potential solutions, ruling out those where
the cost of any valid solution is too high (e.g. higher than the
lowest cost of a valid solution found so far). The goal is to use
this additional information to avoid exploring every possible
solution. Clearly, this approach can equivalently be applied to
problems where the goal is to maximise the value of a valid
solution.

Although the number of subsets produced by the branching
steps can grow exponentially, implying an exponential run-
ning time, algorithms based on this technique can sometimes
find exact solutions to instances of hard optimisation problems
substantially beyond the reach of unstructured search. For ex-
ample, integer linear programming problems can be solved
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using a branch-and-bound approach where the cost function
is based on relaxing to linear programming problems (see Ap-
pendix A for more details).

Here we describe a general quantum approach to accelerate
classical branch-and-bound algorithms almost quadratically.
The quantum branch-and-bound algorithm can be applied to
speed up any classical algorithm that fits into the branch-and-
bound paradigm (formally defined below). These include al-
gorithms for integer linear programming; nonlinear program-
ming; the travelling salesman problem; and more [6].

The quantum algorithm is based on quantum subroutines
that speed up a related class of classical algorithms: back-
tracking algorithms [7, 8]. Backtracking is an approach that
solves constraint satisfaction problems given the ability to de-
termine whether a partial solution to the problem could be ex-
tended to a full solution. Backtracking algorithms can be in-
terpreted as the special case of branch-and-bound algorithms
where the cost function either returns 0 (for a valid solution
to the problem) or ∞ (for an invalid potential solution, or a
partial solution that cannot be extended to a full solution), so
the algorithm described here can be seen as generalising the
results of [7, 8].

This result contrasts with other quantum approaches to
solve hard optimisation problems, such as the adiabatic al-
gorithm [9] and the quantum approximate optimisation algo-
rithm [10], in that the branch-and-bound algorithm guarantees
to find the minimal-cost solution with arbitrarily high proba-
bility; however, for certain problems its running time can be
long (e.g. exponential in the input size).

One area where branch-and-bound algorithms have been
successfully applied classically is finding ground states of
spin models [11–14]. For example, branch-and-bound has
been used to find the largest exact ground states known of
instances of the Bernasconi model [15], corresponding to bi-
nary sequences with minimal autocorrelation. The fastest
known branch-and-bound algorithms for this model have run-
time estimated numerically as approximately O(20.79n) [14];
the quantum branch-and-bound algorithm would improve this
scaling to approximately O(20.4n).

Another spin model addressed using branch-and-bound is
the well-studied Sherrington-Kirkpatrick (S-K) model [16],
which is the family of classical Hamiltonians H(x) =∑

1≤i<j≤n aijxixj where x ∈ {±1}n and aij are distributed
according to the normal distribution N(0, 1). Finding the
lowest-energy state for such a Hamiltonian can be achieved
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in time O(2n/2 poly(n)) using Grover’s algorithm. Recently,
Callison et al. [17] have described an intriguing quantum al-
gorithm that uses quantum walks to solve the S-K model, and
gave evidence based on numerical experiments for small n
that the runtime of the algorithm should be approximately
O(20.41n). Here we apply the quantum branch-and-bound al-
gorithm to speed up a simple classical branch-and-bound al-
gorithm [12] for the S-K model, and show rigorously that the
runtime of the quantum algorithm is O(20.226n) on most in-
stances of size n, which is substantially more efficient than
Grover search. Numerical evidence suggests that the runtime
in practice could be as low as O(20.186n).

Branch-and-cut methods have also been used to find ground
states of spin glasses [13]; these could be accelerated using the
same quantum approach.

Model for branch-and-bound algorithms. For a problem
to be accessible to branch-and-bound, we must have access to
cost and branch procedures. Each takes as input a sub-
set S of potential solutions to an optimisation problem, per-
haps chosen from a restricted family of subsets. cost(S)
returns a lower bound on the cost of any solution within S.
branch(S) either returns that S only contains one element,
or splits S into two or more disjoint sets S1, . . . , Sk. For sim-
plicity, here we assume that k is a fixed constant. For the be-
haviour of cost to be reasonable, we must have cost(S) ≥
cost(S′) whenever S ⊆ S′. We assume that for all sub-
sets S, either cost(S) ∈ [0, cmax] for some known cmax, or
cost(S) = ∞, where the latter corresponds to S containing
no valid solutions. We can assume essentially without loss of
generality that cost is integer-valued; real-valued cost func-
tions can be handled by truncating their output to precision δ,
and multiplying all costs by 1/δ. In this situation cmax effec-
tively acts as a precision parameter.

An abstraction of the problem of finding a minimal-cost so-
lution to a problem given access to the cost and branch
procedures is the following model of search within trees [18],
illustrated in Figure 1. The search space is described by a
rooted tree where each node v is either labelled with an integer
c(v) between 0 and cmax or with∞, and satisfies the promise
that if w is a child of v, then c(w) ≥ c(v). We are given query
access to two oracles, each of which takes as input a node v.
One oracle returns c(v) and the other returns the children of v,
if there are any. The goal is to find a leaf node v such that c(v)
is minimised, while making the minimal number of queries.

In this abstraction, a node in the tree represents a subset of
possible solutions (with a leaf representing a single possible
solution), and its label represents a lower bound on the cost of
any solution in that subset. A label of∞ represents that there
is no valid solution in that subset. Revealing the children of a
node corresponds to splitting a set of potential solutions into
subsets. Note that the backtracking approach for solving con-
straint satisfaction problems corresponds to exploring a tree
of this form where each node is labelled either with 0 or∞.

The best classical strategy for solving the search problem
in such a tree is to maintain a list of “live” nodes (those whose
children have not yet been explored), and always to choose to
explore the live node with the lowest cost [18]. This strategy is
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FIG. 1. An example tree corresponding to a branch-and-bound al-
gorithm. Nodes are labelled with their cost bounds, which are non-
decreasing on any path from the root to a leaf. The green node is the
optimal solution; yellow nodes are removed if the tree is truncated at
the optimal cost.

known as best-first search. Although it is optimal in terms of
query complexity, it may require a very large amount of space
to store the list of live nodes, so in practice other strategies
may be preferred (such as depth-first search); strategies which
achieve near-optimal query complexity in limited space are
known [18].

We will consider particular subtrees of the overall tree, ob-
tained by truncating it at a particular cost c, i.e. deleting all
nodes whose labels are greater than c. This is equivalent to
changing the cost function to a cost’ function such that
cost’(x) =∞ if cost(x) > c. This transformation clearly
preserves the tree structure and the monotonicity of the cost
function. We also have that truncating the tree at a cost cmin

equal to the minimal cost of a valid solution preserves the
presence of a minimal-cost valid solution in the tree.

As observed by Karp and Zhang [19], this kind of trunca-
tion controls the complexity of a class of classical search al-
gorithms: Any algorithm which outputs all the minimal-cost
leaves must explore the entire tree truncated at cost cmin. Oth-
erwise, it could not be sure that it had found all the minimal-
cost leaves. In particular, if all solutions have distinct costs,
any algorithm which outputs the minimal-cost solution must
explore the whole tree truncated at that cost.

Statement of results. We can now state our main result.
Let T be the tree corresponding to a branch-and-bound algo-
rithmA. Let d be the depth of T , let cmin be the minimal cost
of a valid solution, and let Tmin be the size of the truncated
tree with cost bound cmin. (If there is no solution, cmin =∞,
and Tmin is the size of the whole tree T .) Fix a constant ε > 0.
Then there is a quantum algorithm which uses

Õ
(√

Tmind
3/2 log cmax

)
calls to cost and branch, and except with failure proba-
bility at most ε, returns a solution with minimal cost, if one
exists, and otherwise returns “no solution”. The Õ notation
hides polylogarithmic factors in d, 1/ε and log cmax.

Assuming that Tmin � poly(d), Tmin � log cmax, this
is roughly a quadratic speedup over any possible classical
branch-and-bound search algorithm which finds all minimal-
cost solutions in the tree corresponding toA, whose complex-
ity (as discussed above) is lower-bounded by Tmin. In the
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usual case where there is a unique minimal-cost solution, the
speedup is approximately quadratic over any possible classi-
cal branch-and-bound algorithm (i.e. one that uses only the
cost and branch procedures).

Quantum branch-and-bound algorithm. In order to state
the quantum branch-and-bound algorithm, we will need two
quantum-algorithmic ingredients. Both relate to determining
properties of trees, in a model where only the root node is
known in advance, and the structure of the tree can only be re-
vealed via “oracle” queries to nodes. A query to a node reveals
the neighbours of the node and whether the node is marked.
This model disallows the straightforward use of methods such
as Grover’s algorithm to search in the tree.

The first ingredient is quantum tree search. It follows
from [7, 20, 21] that there is a quantum algorithm which, given
ε and oracle access to a tree with depth at most d,N nodes and
maximal degree k = O(1), makes

O
(√

Nd3/2 log d log(1/ε)
)

(1)

queries and performs O(1) other elementary operations per
query, and except with failure probability at most ε:

• If the tree contains at least one marked node, the algo-
rithm returns the label of a marked node;

• If the tree does not contain any marked nodes, the algo-
rithm returns “not found”.

Jarret and Wan have described an algorithm [22] which
solves the same tree search problem with complexity bounded
by O(

√
Nd log4(md) log(m/ε)), where m is the number of

marked nodes. This is an improvement on (1) by up to a fac-
tor of almost d when m is small. However, if m is very large
(e.g. exponential in d), this complexity bound can be larger
than (1). Here, we will need to apply quantum tree search in
a setting where we have no upper bound on m, which could
be as large as N , which in turn can be exponentially large in
n. So we will state complexity bounds based on (1), though
in some cases (e.g. when N is small) the algorithm of Jarret
and Wan may be more efficient.

When we use the quantum tree search algorithm we will
have access to an upper bound on the size of the tree. Al-
though, as stated above, having access to such an upper bound
is not necessary, it can be seen by inspecting the proof of cor-
rectness in [7] that the algorithm is simplified somewhat given
this additional information. However, this does not affect its
asymptotic complexity.

The second ingredient we will need is quantum tree size
estimation [8]. The quantum tree size estimation algorithm,
given query access to a tree with depth at most d,N nodes and
maximal degree k = O(1), and parameters T0, ε, δ, makes

O

(√
T0d

δ3/2
log2(1/ε)

)
queries and performs O(log T0) other elementary operations
per query, and except with failure probability at most ε:

1. Set T ← 1, cold ← 0, ε′ ← ε/(Kd log2 cmax) for some
sufficiently large constant K.

2. While T ≤ Tmax:

(a) If T > Tmax/2, cnew ← cmax. Otherwise, set
cnew ← 0 and for i = 1 to log2 cmax:

i. If Countcnew+cmax/2i(T, ε
′, 1/2) does not re-

turn “contains more than T nodes”, set
cnew ← cnew + cmax/2

i.

(b) Run Searchcnew(ε
′). If it returns the label of a solu-

tion, use binary search on c between cold and cnew

within Searchc(ε
′) to find the minimal c such that a

solution with cost c exists, and return that solution.

(c) Set T ← 2T , cold ← cnew.

3. Return “no solution”

Algorithm 1. Quantum branch-and-bound algorithm with failure pa-
rameter ε.

• If N ≤ T0/(1 + δ), the algorithm outputs Ñ ≤ T0 such
that |Ñ −N | ≤ δN ;

• IfN > (1+δ)T0, the algorithm outputs “contains more
than T0 nodes”.

The restriction to k = O(1) in these algorithms is not sig-
nificant, as any node with degree k can be replaced with a
binary tree of depth O(log k). Hence, if each node had de-
gree at most k, the tree size N would increase by a constant
factor and the depth d would increase by an O(log k) factor,
corresponding to the complexity bounds increasing by a factor
polylogarithmic in d.

Let Countc(T0, ε, δ) denote the quantum tree size estima-
tion algorithm applied to count the number of nodes in the
truncated tree corresponding to the branch-and-bound algo-
rithm with cost bound c, where d and k are fixed; and similarly
let Searchc(ε) denote the quantum tree search algorithm ap-
plied to search in the truncated tree with cost bound c, where
a node is marked if it corresponds to a valid solution to the
original problem (i.e. was a leaf with finite cost in the original
tree). Assume that we have an upper bound cmax such that all
valid solutions have cost strictly less than cmax, and an upper
bound Tmax ≤ kd on the size of the tree; further assume for
simplicity that cmax is a power of 2.

Then the quantum branch-and-bound algorithm is stated
formally as Algorithm 1. The intuitive idea behind it is as
follows: we want to find a cost c ≥ cmin such that the size Tc
of the tree truncated at cost c is not much greater than Tmin.
Given such a c, we can find a minimal-cost solution within the
tree using Searchc, with a complexity of O(

√
Tmin poly(d))

queries. And to find such a c efficiently, we can perform a
binary search on c using Countc, to find the maximal c such
that the tree size is smaller than some upper bound, which
is not much greater than Tmin. There is the technicality that
Countc(T, ε, δ) may not return the correct answer for some
choices of c and T . However, this turns out not to affect
the correctness or performance of the binary search, because
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Countc(T, ε, δ) does always return the correct answer when
the size of the tree truncated at c is sufficiently small with re-
spect to T . The formal proof of correctness and runtime of the
algorithm is deferred to Appendix B.

Sherrington-Kirkpatrick spin glass. The Sherrington-
Kirkpatrick (S-K) model [16] is the family of classical Hamil-
tonians H(x) =

∑
1≤i<j≤n aijxixj where x ∈ {±1}n

and aij are distributed according to the normal distribution
N(0, 1). Let A = (aij) denote the corresponding square ma-
trix where aij = 0 for i ≥ j. Given a Hamiltonian H de-
scribed by the matrix A, our computational task is to deter-
mine Emin(H) := minxH(x).

Determination of the limiting form of the expected ground
state energy Emin := EH [Emin(H)] as n → ∞ has been a
question of extensive interest within the theory of spin glasses.
A precise limiting expression is known for this quantity, which
evaluates to Emin = (−0.763167 · · · + o(1))n3/2. This for-
mula was conjectured by Parisi [23] and later proven correct
by Talagrand [24]. Although an explicit expression, evaluat-
ing it numerically is non-trivial; however, the constant factor
is now known to many digits of precision [25, 26].

Finding the ground state energy of general Ising model
Hamiltonians (of the form ofH with arbitrary coefficients aij)
is NP-hard, which holds even given locality restrictions on the
pairs i, j such that aij 6= 0 [27]. The S-K model is a natural
family of Ising model Hamiltonians, and has been a target for
a number of different algorithmic approaches, both heuristic
(e.g. [28, 29]) and exact [11, 12, 30]. Although it was recently
proven that ground state energies of the S-K model can be ap-
proximated efficiently [31], there is no known efficient (i.e.
polynomial-time in n) method to compute them exactly.

There is a straightforward exact approach to computing
Emin(H) which fits into the branch-and-bound paradigm and
was proposed in [12]. Variables x1, . . . , xn ∈ {±1} are as-
signed values sequentially. To determine a lower bound on the
cost of any assignment beginning with a partial assignment
x1, . . . , x`, we observe that

H(x1, . . . , x`, z`+1, . . . , zn) =∑
1≤i<j≤`

aijxixj +
∑̀
i=1

n∑
j=`+1

aijxizj +
∑

`+1≤i<j≤n

aijzizj

and hence

min
z
H(x1, . . . , x`, z`+1, . . . , zn)

=
∑

1≤i<j≤`

aijxixj + min
z

∑̀
i=1

n∑
j=`+1

aijxizj +
∑

`+1≤i<j≤n

aijzizj


≥
∑

1≤i<j≤`

aijxixj −
n∑

j=`+1

∣∣∣∣∣∑̀
i=1

aijxi

∣∣∣∣∣+ min
z

∑
`+1≤i<j≤n

aijzizj

=: BoundA(x).

The first and second components of BoundA(x) can be com-
puted from x in time O(n2). The third component is equal
to minxH

′(x), where H ′ is formed from H by deleting the

first ` rows and columns of the matrix A = (aij). Thus, if
we have already solved the n − 1 minimisation problems ob-
tained by restricting A to the corresponding submatrices, we
can compute BoundA(x) efficiently. As the runtime of the
overall algorithm is exponential in n, this additional cost does
not significantly affect its overall complexity.

This algorithm fits into the formal model for branch-and-
bound discussed above in a straightforward way: the branch-
and-bound tree is a binary tree, where nodes at depth ` corre-
spond to `-bit strings, for 0 ≤ ` ≤ n, and the cost function
is BoundA. So the quantum branch-and-bound algorithm can
immediately be applied to accelerate it quadratically. Note
that cost should be non-negative and integer-valued; this
can be achieved by truncating the real values aij after p bi-
nary digits to produce a new Hamiltonian H̃ , rescaling by 2p,
and performing an overall energy shift. It is sufficient to take
p = O(log n) to achieve Emin(H̃) = Emin(H) + o(1). This
corresponds to a cost bound for the integer-valued problem
cmax = poly(n).

Let TA denote the size of the branch-and-bound tree cor-
responding to the Hamiltonian H with matrix A, using cost
function BoundA, truncated optimally at cost Emin(H). In
Appendix C we prove that for sufficiently large n, PrA[TA ≥
20.451n] ≤ 0.01. So for the vast majority of instances of size
n, the runtime of the classical branch-and-bound algorithm is
O(20.451n) steps, which is already faster than Grover’s algo-
rithm. The runtime of the quantum branch-and-bound algo-
rithm on these instances is O(20.226n) steps, observing that
the depth d of the branch-and-bound tree is equal to n, and
log cmax = O(log n), so these only contribute lower-order
terms to the complexity. The constant 0.01 could be made
arbitrarily small.

This rigorous result is only an upper bound on the tree size
of the classical algorithm (and by extension the runtime of the
quantum algorithm), which may not be tight. To investigate
this, a depth-first variant of the classical algorithm was imple-
mented and run on instances of the S-K model for n ≤ 50.
Extrapolation of the tree sizes obtained suggests that the true
scaling of TA for random A is O(20.371n), which would cor-
respond to a quantum runtime of O(20.186n). See Appendix
E for further details.

Conclusions and further work. We have described a
quantum algorithm which can accelerate classical branch-and-
bound algorithms in a very general setting. We finish by dis-
cussing potential routes to improving the results of this work.
First, in some cases the square-root dependence of the runtime
on Tmin cannot be improved; even in the special case where
the cost function either evaluates to 0 or∞, there are depth-
d trees for which the quantum algorithm requires Ω(

√
Tmind)

queries to determine whether there is a leaf of cost 0 [32].
However, it might be possible to improve the depth depen-
dence by a factor of up to d, e.g. by extending ideas of [22].

Ambainis and Kokainis [8] have given a quantum algorithm
which, given a deterministic classical algorithm that explores
a search tree to find a marked node and uses Q queries to do
so, can find a marked node using Õ(

√
Qd3/2) queries. This

improves on the quantum tree search algorithm used here in
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that its complexity depends on Q, rather than the size T of the
whole tree. It seems unclear whether this algorithm could be
applied to accelerate Algorithm 1 directly, for at least two rea-
sons. First, the algorithm as designed also uses the Count sub-
routine, whose runtime depends on the entire tree size. Sec-
ond, in practice any classical or quantum branch-and-bound
algorithm is likely to explore the whole tree of potential solu-
tions, in order to ensure that it has not omitted any solutions
with lower cost than the current best solution.

Finally, in order to determine whether the quantum branch-
and-bound algorithm will genuinely outperform the best clas-
sical methods for problems of practical interest, once all over-
heads are taken into account, a more detailed analysis of the
algorithm’s runtime should be undertaken, extending previous

analysis for backtracking [33].
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Appendix A: Example: Integer Linear Programming

To gain some intuition for how the results presented here
could be applied, in this appendix we describe one simple and
well-known application of branch-and-bound techniques: in-
teger linear programming. An integer linear program (ILP) is
a problem of the form:

minimise cTx
subject to Ax ≥ b,

x ≥ 0,

x ∈ Zn

where b and c are vectors, A is a matrix, and inequalities
are interpreted componentwise. Integer linear programming
problems have many applications, including production plan-
ning, scheduling, capital budgeting and depot location [34].

We can solve ILPs using branch-and-bound as follows. We
begin by finding a lower bound on the optimal solution to the
ILP, by relaxing it to a standard linear program (LP) and solv-
ing the LP; that is, removing the constraint x ∈ Zn. This
corresponds to the cost function. If the solution s is integer-
valued, we are done, as it corresponds to a valid solution to the
ILP. Otherwise, consider an index i such that the found solu-
tion value si is not an integer. To implement branching, we
consider the two ILPs formed by introducing the constraints
xi ≤ bsic, xi ≥ dsie. At least one of these must have the
same optimal solution as the original ILP. We then repeat with

these new ILPs. An appealing aspect of this method is that
the solution to the relaxation simultaneously tells us a lower
bound on the cost, and a good variable to branch on.

The sequences of additional constraints specify subsets of
potential solutions to the overall ILP. The branch and cost
functions take this sequence as input and solve the resulting
LP, to make a decision about which variable to branch on
next, and compute a lower bound on cost, respectively. The
complexity of the LP-solving step is polynomial in the input
size, so the primary contribution to the overall runtime will in
general be the exponential scaling in terms of the number of
branching steps. A standard classical method could be used
(e.g. the simplex algorithm), or one of the recently developed
quantum algorithms for linear programming [35–39].

A particularly simple and elegant special case of this ap-
proach is the knapsack problem. Here we are given a list of
n items, each with weights wi and values vi, and an overall
weight upper bound W . We seek to find a subset S of the
items that maximises

∑
i∈S vi, given that

∑
i∈S wi ≤W . We

can write this as an integer linear program as follows:

maximise
n∑
i=1

vixi

subject to
n∑
i=1

wixi ≤W,

xi ∈ {0, 1} for all i.

Each variable xi corresponds to whether the i’th item is in-
cluded in the knapsack. Then the LP relaxation is simply
to replace the constraint xi ∈ {0, 1} with the constraint
0 ≤ xi ≤ 1 for all i. This is equivalent to allowing fractional
amounts of each item to be included.

The branch-and-bound approach to solving ILPs can imme-
diately also be applied to the generalisation to Mixed Integer
Linear Programming, where only certain variables are con-
strained. Now we only branch on those variables which are
forced to be integers. One can also apply it to “branch and
cut” algorithms. In this approach, when the LP relaxation re-
turns a non-integer-valued solution, one may also add a new
constraint (hyperplane) which separates that solution from all
integer-valued feasible solutions.

Appendix B: Analysis of Algorithm 1

In this appendix we prove the correctness and the claimed
runtime bound of Algorithm 1.

Theorem 1. Let cmin be the minimal cost of a valid solution,
and let Tmin be the size of the truncated tree with cost bound
cmin. (If there is no solution, cmin = ∞, and Tmin is the size
of the whole tree.) Algorithm 1 uses

O

(√
Tmind log cmax log

(
d log cmax

ε

)
×
(

log

(
d log cmax

ε

)
+ d log d

))

https://galton.uchicago.edu/~lalley/Courses/386/Concentration.pdf
https://galton.uchicago.edu/~lalley/Courses/386/Concentration.pdf
https://galton.uchicago.edu/~lalley/Courses/386/Concentration.pdf
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oracle calls, and except with failure probability at most ε, re-
turns a solution with minimal cost, if one exists, and otherwise
“no solution”.

Proof. We first show that the algorithm succeeds with proba-
bility at least 1 − ε. The loop executes at most O(d) times,
so each of Count and Search is used at most O(d log cmax)
times. By a union bound, it is sufficient to pick ε′ =
O(ε/(d log cmax)) to ensure that all the uses of Count and
Search succeed, except with total probability at most ε. So
we henceforth assume that Count and Search do always suc-
ceed.

If this is the case, we first observe that the algorithm al-
ways correctly outputs a minimal-cost solution, if one exists,
or otherwise “no solution”. This is because at the final itera-
tion (when T > Tmax/2), if no solution has previously been
found then Search will explore the entire tree and find a solu-
tion if one exists. To see that it outputs a minimal-cost solu-
tion, note that the binary search on c using Search is over the
range [cold, cnew], and cold is no larger than the largest value of
cnew previously computed, so any solution with cost smaller
than cold would have been found in a previous iteration.

It remains to prove the runtime bound. Let Tc de-
note the size of the truncated tree with cost bound c (so
Tmin = Tcmin ). The first binary search (in part 2a)
executes Countc O(log cmax) times, each iteration using
O(
√
Td log2(1/ε′)) queries; and the second binary search ex-

ecutes Searchcnew O(log cmax) times, where each iteration uses
O(
√
Tcnewd

3/2 log d log(1/ε′)) queries. At each iteration of
the loop, after the binary search using Countc, Tcnew ≤ 3T/2
by correctness of the quantum tree size estimation algorithm.
Further, at the first iteration when T ≥ 3Tmin/2 (if such an it-
eration occurs), for all c ≤ cmin, Countc does not return “con-
tains more than T nodes”. This implies that cnew ≥ cmin, be-
cause as the binary search terminated at cost cnew, Countcnew+1

must have returned “contains more than T nodes”. Note that
this holds even though Countc can return an arbitrary outcome
when Tc ∈ (2T/3, 3T/2].

Therefore, at this iteration the tree truncated at cost cnew
contains a minimal-cost solution, which will be found by the
binary search on c using Searchc, and the algorithm will ter-
minate. On the other hand, if there is no iteration such that
T ≥ 3Tmin/2, we must have Tmin > 2Tmax/3. Combining
these two claims, we have T ≤ 3Tmin throughout the algo-
rithm. The loop over exponentially increasing values of T
does not affect the overall complexity bound, so the overall
complexity is

O

(√
Tmind log cmax log

(
d log cmax

ε

)
×
(

log

(
d log cmax

ε

)
+ d log d

))
queries, as claimed.

We remark that it seems that, in general, Algorithm 1 could
not be replaced with simply using the Search subroutine with

exponentially increasing values of the cost parameter (an ap-
proach taken in [40] for the special case of accelerating back-
tracking algorithms for the travelling salesman problem). This
is because increasing the cost at which the tree is truncated by
a constant factor could increase the size of the truncated tree
substantially beyond Tmin.

Appendix C: Truncated tree size bound for
Sherrington-Kirkpatrick model

In this appendix, let TA denote the size of the tree corre-
sponding to the classical branch-and-bound algorithm applied
to find the ground-state energy of an Ising HamiltonianH cor-
responding to an n×n matrix A, using the bounding function
BoundA described in the main text, where the tree is truncated
at the optimal value cmin.

We will prove the following result:

Theorem 2. Let A be an n × n matrix corresponding to a
Sherrington-Kirkpatrick model instance on n spins. For all
sufficiently large n,

Pr
A

[TA ≥ 20.451n] ≤ 0.01.

The dominant term in the quantum complexity is the square
root of the classical complexity, which is determined by
TA, so Theorem 2 implies that the quantum branch-and-
bound algorithm has an O(20.226n) running time on 99% of
Sherrington-Kirkpatrick model instances.

In order to prove Theorem 2, we will need two technical
lemmas, proven in Appendix D.

Lemma 3. Let x1, . . . , xN ∼ N(0, 1). Let f : RN → R
be continuous and 1-Lipschitz in each coordinate separately,
i.e. |f(x1, . . . , xN ) − f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xN )| ≤

|xi − x′i| for all i ∈ [N ]. Then

Pr[f(x) ≥ Ex[f(x)] + t] ≤ e−t
2/(2N),

Pr[f(x) ≤ Ex[f(x)]− t] ≤ e−t
2/(2N).

Lemma 3 was shown in [41] but with an incorrect con-
stant. We will also need a bound on the expectation
EA[minz∈{±1}n z

TAz]. A precise value for this is known as
n→∞, but we will need a bound that holds for arbitrary n:

Lemma 4. Let A be an n × n matrix corresponding to a
Sherrington-Kirkpatrick model instance on n spins. For all
n, EA[minz∈{±1}n z

TAz] ≥ −0.601
√
n− 0.833n3/2.

We are now able to prove Theorem 2. The basic strategy is
to upper-bound the expected value of TA, using that (by lin-
earity of expectation) this can be expressed as a sum over all
bit-strings x ∈ {±1}`, 0 ≤ ` ≤ n, of the probability that
the node corresponding to x is contained within the truncated
branch-and-bound tree. These bit-strings x are precisely those
such that BoundA(x) ≤ minz∈{±1}n z

TAz, and a tail bound
can be used to upper-bound the probability that this event oc-
curs.
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There are two technical difficulties which need to be han-
dled. First, this approach does not give a good upper bound
in the case where minz∈{±1}n z

TAz is high, which can oc-
cur with non-negligible probability, leading to EA[TA] be-
coming large. We therefore handle this case separately and
show that it occurs with low probability. Next, to find a tail

bound on BoundA(x), we need to compute expressions of the
form EA[minz∈{±1}n−` zTAz]; although a limiting form for
this is known [23, 24, 26], we will additionally need relatively
tight bounds in the case ` ≈ n. We therefore split into cases
` ≤ 0.9n (where (n − `) → ∞ and we can use the precise
limiting result) and ` > 0.9n (where we use Lemma 4).

Proof of Theorem 2. Write µ = EA[minz∈{±1}n z
TAz], and let γ > 0 be an arbitrary value to be determined. We will upper-

bound the probability that TA ≥ B for some B as follows, where we use the notation [Y ] for the indicator random variable
which evaluates to 1 if Y is true, and 0 if Y is false:

Pr
A

[TA ≥ B] = Pr
A

[TA ≥ B ∧min
z
zTAz ≤ µ+ γn3/2] + Pr

A
[TA ≥ B ∧min

z
zTAz > µ+ γn3/2]

≤ Pr
A

[
TA[min

z
zTAz ≤ µ+ γn3/2] ≥ B

]
+ Pr

A
[min
z
zTAz > µ+ γn3/2]

≤ 1

B
EA
[
TA[min

z
zTAz ≤ µ+ γn3/2]

]
+ Pr

A
[min
z
zTAz > µ+ γn3/2]

=
1

B

n∑
`=0

∑
x∈{±1}`

EA
[
[BoundA(x) ≤ min

z
zTAz][min

z
zTAz ≤ µ+ γn3/2]

]
+ Pr

A
[min
z
zTAz > µ+ γn3/2]

≤ 1

B

n∑
`=0

∑
x∈{±1}`

Pr
A

[
BoundA(x) ≤ µ+ γn3/2

]
+ Pr

A
[min
z
zTAz > µ+ γn3/2]

≤ n+ 1

B
max

`,x∈{±1}`
2` Pr

A

[
BoundA(x) ≤ µ+ γn3/2

]
+ Pr

A
[min
z
zTAz > µ+ γn3/2]

where the second inequality is Markov’s inequality and we use linearity of expectation in the second equality.
To upper-bound the last term, we use Lemma 3. We first observe that f(A) = minz z

TAz is 1-Lipschitz in each variable, as
if we modify A to produce A′ by changing apq to a′pq for some pair p < q,

min
z∈{±1}n

∑
i<j

a′ijzizj = min
z∈{±1}n

(a′pq − apq)zpzq +
∑
i<j

aijzizj

 ≥ −|a′pq − apq|+ min
z∈{±1}n

∑
i<j

aijzizj , (C1)

and by a similar argument minz∈{±1}n
∑
i<j a

′
ijzizj ≤ |a′pq − apq|+ minz∈{±1}n

∑
i<j aijzizj . So Lemma 3 implies that

Pr
A

[min
z
zTAz > µ+ γn3/2] ≤ e−(γn

3/2)2/(2(n
2)) ≤ e−γ

2n.

For this to be upper-bounded by a small constant (e.g. 0.005) we can take γ = O(1/
√
n).

We next upper-bound the first term by bounding PrA
[
BoundA(x) ≤ µ+ γn3/2

]
. We only need to consider ` ≥ 0.4n in the

maximisation, because when ` ≤ 0.4n, trivially upper-bounding this probability by 1 already gives a sufficiently strong bound.
Recall that

BoundA(x) =
∑

1≤i<j≤`

aijxixj −
n∑

j=`+1

∣∣∣∣∣∑̀
i=1

aijxi

∣∣∣∣∣+ min
z

∑
`+1≤i<j≤n

aijzizj .

The function fx(A) = BoundA(x) is 1-Lipschitz in each variable by a similar argument to (C1). Thus, for any η ≥ 0,

Pr
A

[
BoundA(x) ≤ EA[BoundA(x)]− ηn3/2

]
≤ e−η

2n. (C2)
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First assume that 0.4n ≤ ` ≤ 0.9n, so (n− `)→∞ as n→∞. For any x ∈ {±1}`, we have

EA[BoundA(x)] =
∑

1≤i<j≤`

EA[aij ]xixj −
n∑

j=`+1

EA

[∣∣∣∣∣∑̀
i=1

aijxi

∣∣∣∣∣
]

+ EA

min
z

∑
`+1≤i<j≤n

aijzizj

 (C3)

= −(n− `)EA

[∣∣∣∣∣∑̀
i=1

aij

∣∣∣∣∣
]

+ EA

min
z

∑
`+1≤i<j≤n

aijzizj

 (C4)

= −(n− `)
√

2

π

√
`− (0.763 · · ·+ o(1))(n− `)3/2, (C5)

where we use linearity of expectation to obtain the first expression, that
∑`
i=1 aij ∼

√
`N(0, 1), and the known limiting result

EA
[
minz

∑
`+1≤i<j≤n aijzizj

]
= (−0.763167 · · ·+ o(1))(n− `)3/2 [23, 24, 26].

Writing α = `/n, we have that

EA[BoundA(x)] = (−(1− α)
√
α

√
2

π
− (0.763 · · ·+ o(1))(1− α)3/2)n3/2 =: g1(α)n3/2.

On the other hand, for ` ≥ 0.9n, we follow a similar argument but apply the nonasymptotic result of Lemma 4 to bound
EA
[
minz

∑
`+1≤i<j≤n aijzizj

]
, which implies that

EA[BoundA(x)] ≥ −(n− `)
√

2

π

√
`− 0.601

√
n− `− 0.833(n− `)3/2 (C6)

≥ −(n− `)
√

2

π

√
`− 1.434(n− `)3/2 (C7)

= (−(1− α)
√
α

√
2

π
− 1.434(1− α)3/2)n3/2 =: g2(α)n3/2. (C8)

In either case, we have

Pr
A

[
BoundA(x) ≤ µ+ γn3/2

]
= Pr

A

[
BoundA(x)− EA[BoundA(x)] ≤ µ+ γn3/2 − EA[BoundA(x)]

]
.

By (C2), using µ = (−0.763167 · · ·+o(1))n3/2 and observing (see Figure 2) that EA[BoundA(x)] > µ+γn3/2 for sufficiently
large n, so the right-hand side is negative as required, we have

Pr
A

[
BoundA(x) ≤ µ+ γn3/2

]
≤

{
e−(g1(α)+(0.763···+o(1))−γ)2n if 0.4 ≤ α ≤ 0.9

e−(g2(α)+(0.763···+o(1))−γ)2n if α ≥ 0.9
.

So

max
`≥0.4n,x∈{±1}`

2` Pr
A

[
BoundA(x) ≤ µ+ γn3/2

]
≤ max{ max

α∈[0.4,0.9]
2αne−(g1(α)+0.763···+o(1))2n, max

α∈[0.9,1]
2αne−(g2(α)+0.763···+o(1))2n}

= max{ max
α∈[0.4,0.9]

2n(α−(g1(α)+0.763···+o(1))2/ ln 2), max
α∈[0.9,1]

2n(α−(g2(α)+0.763···+o(1))2/ ln 2)}

observing that γ = o(1). It remains to determine upper bounds on the functions

α− (g1(α) + 0.763 · · ·+ o(1))2

ln 2
= α−

(−(1− α)
√
α
√

2
π + 0.763 . . . (1− (1− α)3/2))2

ln 2
+ o(1) =: h1(α) + o(1), (C9)

α− (g2(α) + 0.763 · · ·+ o(1))2

ln 2
= α−

(−(1− α)
√
α
√

2
π + 0.763 · · · − 1.434(1− α)3/2)2

ln 2
+o(1) =: h2(α) +o(1). (C10)
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This can easily be achieved numerically, giving (see Figure 3) the result that h1(α) < 0.45003 for 0 ≤ α ≤ 1 and h2(α) <
0.45003 for α ≥ 0.9. Hence

Pr
A

[TA ≥ B] ≤ (n+ 1)2(0.45003+o(1))n

B
+ 0.005,

and to upper-bound the first term by 0.005, for sufficiently large n one can take B = 20.451n. This completes the proof.

0.0 0.2 0.4 0.6 0.8 1.0

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-0.763

g1( )
g2( )

Figure 2. The functions g1(α), g2(α) defined in (C5), (C8). g1(α) ≥
−0.763 for all α ≥ 0.4, while g2(α) ≥ −0.763 for all α ≥ 0.9.
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Figure 3. The functions h1(α), h2(α) defined in (C9), (C10).
h1(α) < 0.45003 for all α, while h2(α) < 0.45003 for all α ≥ 0.9.

Appendix D: Proofs of technical lemmas

In this appendix we prove Lemmas 3 and 4. We say
that f(x1, . . . , xN ) satisfies the bounded differences condi-
tion with constants di, i ∈ [N ], if |f(x)− f(x′)| ≤ di when-
ever x and x′ differ only in the i’th coordinate.

Lemma 5 (McDiarmid’s inequality or method of bounded
differences [42, Corollary 5.2]). If f(x1, . . . , xN ) satisfies
the bounded differences condition with constants di, and
x1, . . . , xN are independent random variables, then

Pr[f(x) ≥ Ex[f(x)] + t] ≤ e−2t
2/d,

Pr[f(x) ≤ Ex[f(x)]− t] ≤ e−2t
2/d,

where d =
∑N
i=1 d

2
i .

Lemma 3 (restated). Let x1, . . . , xN ∼ N(0, 1). Let
f : RN → R be continuous and 1-Lipschitz
in each coordinate separately, i.e. |f(x1, . . . , xN ) −
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xN )| ≤ |xi − x′i| for all i ∈

[N ]. Then

Pr[f(x) ≥ Ex[f(x)] + t] ≤ e−t
2/(2N),

Pr[f(x) ≤ Ex[f(x)]− t] ≤ e−t
2/(2N).

Proof. For i ∈ [N ], j ∈ [M ], let yji be a Rademacher ran-
dom variable, taking values ±1 with equal probability. Then
define the sequence x(y) by x(y)i = 1√

M

∑M
j=1 y

j
i . Let

g : {±1}MN → R be defined by setting g(y) = f(x(y)).
Then changing one entry of y can change x(y)i by at most
2/
√
M , so we can apply Lemma 5 with di = 2/

√
M to ob-

tain

Pr[f(x(y)) ≥ Ey[f(x(y))] + t] ≤ e−t
2/(2N),

Pr[f(x(y)) ≤ Ey[f(x(y))]− t] ≤ e−t
2/(2N).

As M → ∞, the distribution of x(y)i approaches a standard
normal distribution for all i. The lemma follows.

Lemma 4 (restated). LetA be an n×nmatrix corresponding
to a Sherrington-Kirkpatrick model instance on n spins. For
all n, EA[minz∈{±1}n z

TAz] ≥ −0.601
√
n− 0.833n3/2.

Proof of Lemma 4. We start with

EA
[

min
z∈{±1}n

zTAz

]
= −

∫ 0

−∞
Pr

[
min

z∈{±1}n
zTAz ≤ t

]
dt,

valid as minz∈{±1}n z
TAz is non-positive. Next, for any t ≤

0 we have

Pr

[
min

z∈{±1}n
zTAz ≤ t

]
≤ 2n Pr

∑
i<j

aij ≤ t


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using a union bound over z and symmetry of the distribution
of aij . By a tail bound on the normal distribution, we have

Pr

∑
i<j

aij ≤ t

 ≤ e−t2/(2(n
2)) ≤ e−t

2/n2

for all t ≤ 0. So

EA
[

min
z∈{±1}n

zTAz

]
≥ −

∫ 0

−∞
min{1, 2ne−t

2/n2

}dt

= −
∫ −n3/2

√
ln 2

−∞
2ne−t

2/n2

dt−
∫ 0

−n3/2
√
ln 2

1dt

= −n2n−1/2
∫ −√2n ln 2

−∞
e−t

2/2dt−
√

ln 2n3/2

≥ −
√
n

2
√

ln 2
−
√

ln 2n3/2

= −0.600561 . . .
√
n− 0.832555 . . . n3/2,

where we use the bound
∫∞
a
e−x

2/2dx ≤ 1
ae
−a2/2 for any

a > 0 in the second inequality.

Appendix E: Classical numerical branch-and-bound results

We implemented the classical branch-and-bound algorithm
described in the main text, with cost function BoundA, us-
ing a simple depth-first search procedure within the branch-
and-bound tree which backtracks on nodes corresponding to
partial solutions with an energy bound worse than the lowest
energy seen thus far. For an S-K model instance described by
a matrix A, this gives an upper bound on the size TA of an op-
timally truncated branch-and-bound tree (equivalently, on the
runtime of the best-first search algorithm applied to find the
ground state energy, with cost function BoundA).

This algorithm enabled instances on more than 50 spins to
be solved within minutes on a standard laptop computer. We
then carried out a least-squares fit on the log of the number
of nodes explored, omitting small n, to estimate the scaling
of the algorithm with n. Note that, due to finite-size effects,
this may not be accurate for large n; however, it gives an in-
dication of tree size scaling. The median normalised ground
state energy found for the larger values of n (e.g.≈ −0.71 for

n = 50) seems to approach the limiting value −0.763167 . . .
relatively slowly. These results are consistent with heuristic
finite-size results reported in [28] and were validated using
exhaustive search for small n.

10 20 30 40 50
n

26

29

212

215

218

221

224

M
ed

ia
n 

tre
e 

siz
e

Median tree size
Linear fit

Figure 4. Median tree size explored by classical branch-and-bound
algorithm with depth-first strategy. 99 random instances generated
for each n. Fit is line y = 20.371n+5.380.
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Figure 5. Normalised ground state energy Eminn
−3/2 of instances

of the S-K model. 99 random instances generated for each n.
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