
Applying quantum algorithms to constraint satisfaction problems

Earl Campbell,1 Ankur Khurana,2, 3 and Ashley Montanaro4

1Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
2Quantum Engineering Centre for Doctoral Training, University of Bristol, UK

3School of Physics, University of Bristol, UK
4School of Mathematics, University of Bristol, UK∗

Quantum algorithms can deliver asymptotic speedups over their classical counterparts. However, there are
few cases where a substantial quantum speedup has been worked out in detail for reasonably-sized problems,
when compared with the best classical algorithms and taking into account realistic hardware parameters and
overheads for fault-tolerance. All known examples of such speedups correspond to problems related to simu-
lation of quantum systems and cryptography. Here we apply general-purpose quantum algorithms for solving
constraint satisfaction problems to two families of prototypical NP-complete problems: boolean satisfiability
and graph colouring. We consider two quantum approaches: Grover’s algorithm and a quantum algorithm for
accelerating backtracking algorithms. We compare the performance of optimised versions of these algorithms,
when applied to random problem instances, against leading classical algorithms. Even when considering only
problem instances that can be solved within one day, we find that there are potentially large quantum speedups
available. In the most optimistic parameter regime we consider, this could be a factor of over 105 relative to a
classical desktop computer; in the least optimistic regime, the speedup is reduced to a factor of over 103. How-
ever, the number of physical qubits used is extremely large, and improved fault-tolerance methods will likely be
needed to make these results practical. In particular, the quantum advantage disappears if one includes the cost
of the classical processing power required to perform decoding of the surface code using current techniques.

Many quantum algorithms are known, for tasks as diverse
as integer factorisation [92] and computing Jones polynomi-
als [4]. Indeed, at the time of writing, the Quantum Algorithm
Zoo website [62] cites 392 papers on quantum algorithms.
However, there are relatively few cases known where quan-
tum algorithms substantially outperform their classical coun-
terparts for problems of practical importance, and the runtime
of the quantum algorithm has been calculated in detail. Exam-
ples include simulating the chemical processes involved in bi-
ological nitrogen fixation [84]; breaking cryptosystems based
on integer factorisation [58, 75] and elliptic curves [86]; quan-
tum simulation of spin systems [37] and electronic structure
Hamiltonians [10]. In all of these cases, the underlying quan-
tum algorithm achieves an exponential speedup over its clas-
sical counterpart, and under realistic assumptions about the
performance of the quantum hardware, can solve a problem in
days or weeks that might take decades or centuries on a fast
classical computer.

Notwithstanding the extreme practical importance of some
of these applications, they share the feature that they are rather
special-purpose. While simulation of quantum systems, for
example, has a large number of uses [55], there are many
problem domains for which it is simply not relevant. Here we
focus on problems in the general area of constraint satisfaction
and optimisation – an area critical to many different industry
sectors and applications – and aim to quantify the likely ad-
vantage that could be achieved by quantum computers. We
seek to satisfy the following desiderata:

1. (Rigour) There should exist a quantum algorithm
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which solves the problem with provable correctness and
rigorous performance bounds.

2. (Broad utility) The abstract problem solved by the al-
gorithm should be broadly useful across many different
applications.

3. (Performance bounds) We should compute the perfor-
mance of the quantum and classical algorithms explic-
itly for particular problem instances, including all rele-
vant overheads.

4. (Runtime) The problem instance used for comparison
should be one that can be solved by the quantum com-
puter within a reasonable time (e.g. < 1 day) under
reasonable assumptions about the performance of the
quantum hardware.

5. (Benchmarking) The point of comparison should be
one of the best classical algorithms known, running on
modern-day hardware.

These points between them seem to put severe restrictions
on the ability of quantum computing to achieve a significant
performance enhancement. First, the requirement of rigour
rules out heuristic algorithms running on current or near-term
hardware, such as quantum annealing (e.g. [85]) or the quan-
tum approximate optimisation algorithm [49].

Next, the requirement of broad utility rules out the expo-
nential speedups discussed above. In general, quantum al-
gorithms that are broadly applicable to accelerating classical
algorithms tend to achieve at best quadratic speedups (that is,
the scaling with problem size of the quantum algorithm’s run-
time is approximately the square root of its classical counter-
part); one famous example is Grover’s algorithm [57], which
speeds up unstructured search. In other models, such as query

mailto:ashley.montanaro@bristol.ac.uk


2

complexity, it can even be proven that special problem struc-
ture is required to see an exponential quantum speedup [16].
Although even a quadratic speedup will become arbitrarily
large for large enough input sizes, choosing an extremely large
input size will make the execution time of the quantum algo-
rithm unacceptably long for practical purposes. This moti-
vates the runtime requirement, which is particularly challeng-
ing to satisfy because many quantum algorithms (e.g. Grover’s
algorithm [97]) are inherently serial: they cannot be paral-
lelised without reducing the quantum speedup.

The requirement to compute accurate performance bounds
implies that we should take into account not just the perfor-
mance of the quantum hardware itself (which will in gen-
eral be slower than modern-day classical hardware) but also
the overhead from fault-tolerance, which could correspond to
an increase of several orders of magnitude in the number of
qubits required, and a concomitant increase in cost and run-
time. Table I lists parameters for quantum hardware in various
regimes (“Realistic”, “Plausible” and “Optimistic”). “Realis-
tic” is based on relatively modest improvements on parame-
ters already demonstrated in experiment. For example, in su-
perconducting qubit systems, 2-qubit gate times of 40ns [15]
and measurement times of under 50ns [94] have been demon-
strated, and numerical simulations suggest the possibility of
26ns gates [45]; 2-qubit gate error rates of 0.06 have been
demonstrated [15] and 0.004 is predicted [45]. In ion traps,
2-qubit gate times of 480ns have been demonstrated [87], as
have error rates of 0.001 (at the cost of increasing the gate
duration) [13]. The other categories are based on the simple
assumption that order-of-magnitude improvements are possi-
ble.

One may reasonably query whether this assumption is real-
istic. Considering gate times, there is quite a wide variation
in leading results reported in the literature. Even considering
superconducting qubits alone, these include 40ns in a 5-qubit
system (2014) [15], 150ns in a 6-qubit system (2017) [63],
and 100–250ns in a 19-qubit system (2017) [79]. Classically,
within the period 1995-2000 Intel CPUs increased in clock
speed by about a factor of 10. In the case of error rates, al-
though error rates of 10−3 combined with <100ns gate times
have not yet been demonstrated, an ultimate error rate of 10−5

may even be pessimistic, if more exotic technologies such as
topological quantum computers come to fruition; an effective
error rate of 10−9 has been assumed elsewhere in the literature
for such devices [84]. See [3] for a more detailed performance
extrapolation.

Finally, the benchmarking requirement implies that we
should not simply compare the quantum algorithm against
the simplest or most obvious classical competitor, but should
choose a competitor that is one of the fastest options actually
used in practice. For example, Grover’s algorithm can deter-
mine satisfiability of a boolean formula containing n variables
with O(2n/2) evaluations of the formula [57], whereas ex-
haustive search would use O(2n) evaluations. However, other
algorithms are known which are much faster in practice, for
example based on the DPLL method [41, 42]. A fair quantum-
classical comparison should test against these best algorithms.

Parameter Realistic Plausible Optimistic
Measurement time 50ns 5ns 0.5ns
2-qubit gate time 30ns 3ns 0.3ns

Cycle time 200ns 20ns 2ns
Gate error rate 10−3 10−4 10−5

TABLE I. Parameter regimes considered in this work. “Realistic”
corresponds to values reported in the literature as possible now, or
predicted in the near future. “Cycle time” is the time required to
perform one surface code cycle. Each such cycle comprises four 2-
qubit gates, possibly two 1-qubit gates and a measurement. These
must be performed for each of X and Z, but this can be parallelised
to an extent that depends on the relative times required to implement
measurements and gates; we therefore only consider one X/Z cycle
when estimating the cycle time, and assume that a 1-qubit gate can
be implemented in half the time required for a 2-qubit gate.

It is worth pausing to check whether there is hope to achieve
a substantial quantum speedup at all while satisfying all the
above desiderata. Imagine there exists a family of problems
which is exceptionally challenging to solve classically: for
a problem instance involving n boolean variables, the best
classical algorithm consists of simply evaluating some sim-
ple “oracle” function of the variables for ∼ 2n different as-
signments. Further assume that this function can be evaluated
efficiently on both a classical and quantum computer. For ex-
ample, we could consider a cryptographic hash function. Such
functions are designed to be easy to compute and hard to in-
vert, and in some cases the hash of (e.g.) a 256-bit integer can
be computed in under approximately 1000 CPU cycles [21].
Given the overhead required to implement a classical circuit
reversibly, it is hard to imagine1 performing an equivalently
complex operation via a quantum circuit in circuit depth less
than 1000 (and if this were possible, it is plausible that it
would lead to a faster classical algorithm).

Therefore, assume that the quantum circuit depth required
to solve an instance of size n is approximately 1000 × 2n/2,
corresponding to approximately the depth required to execute
Grover’s algorithm, while the classical runtime is 1000 × 2n

clock cycles. For simplicity, assume the classical computer’s
clock speed is 1GHz. (This may appear unrealistic, as high-
performance computing hardware could be used to solve a
problem of this form via parallel computation. However, in
the context of a cost comparison between quantum and clas-
sical computation, this would correspond to multiplying the
cost of the classical computation by the number of parallel
processors used. So computing the speedup over one classical
processor can be used as a proxy for the cost advantage over
multiple processors.)

Given no overhead at all for fault-tolerance, considering
the gate times in Table I and only problem instances that can
be solved in 1 day, we obtain the middle row of Table II.

1 However, see Section II for a very low-depth quantum circuit for boolean
satisfiability.
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Oracle Realistic Plausible Optimistic
depth

Max depth 2.88× 1012 2.88× 1013 2.88× 1014

1000 Max size n 62 69 76
Cl. runtime 4.61× 1012s 5.90× 1014s 7.56× 1016s

Speedup 7.16× 107 8.10× 109 9.16× 1011

5× 105 [8] Max size n 44 51 58
Cl. runtime 1.76× 107s 2.25× 109s 2.88× 1011s

Speedup 2.80× 102 3.16× 104 3.58× 106

TABLE II. Likely upper bounds on speedup factors possible for
square-root-type quantum algorithms running for at most one day in
different regimes, assuming that there is no overhead for fault toler-
ance, so maximum circuit depths are only determined by gate times.

It is clear that the speedups achieved are very substantial in
all cases. An example of a more realistic depth overhead is
the quantum circuit for computing the SHA-256 hash func-
tion described in [8], which has depth ≈ 5 × 105. Using
this example, we achieve a speedup factor between roughly
2× 102 and 4× 106, depending on assumptions, which is still
quite substantial at the high end. Note that, counterintuitively,
decreasing the quantum clock speed (equivalently, increasing
the oracle circuit depth) by a factor of c reduces the largest
speedup that can be achieved in a given time period by a fac-
tor of approximately c2. This strongly motivates the design of
depth-efficient quantum circuits and hardware with high clock
speeds.

Table II represents an estimate of the best possible speedups
for square-root-type quantum algorithms. It remains to at-
tempt to show that significant speedups can actually be
achieved for problems of practical interest, which is our fo-
cus in this work.

I. OUR RESULTS

In an attempt to satisfy all the above requirements, we fo-
cus on two prominent and fundamental NP-complete prob-
lems: graph colouring and boolean satisfiability. In the graph
colouring problem, we are given a graph G with n vertices,
and asked to assign one of k colours to each vertex, such that
no pair of adjacent vertices shares the same colour. If no such
colouring exists, we should detect this fact. In the boolean
satisfiability problem, we are given a boolean formula φ on
n variables in conjunctive normal form and asked to find a
satisfying assignment to the formula, if one exists. That is,
the formula is made up of clauses, where each clause is an
OR function of some of the variables (each possibly appear-
ing negated), and we are asked to find an assignment to the
variables such that all of the clauses evaluate to true. Here we
consider the special case k-SAT, where each clause contains
exactly k variables.

Each of these problems has countless direct applications.

In the case of graph colouring, these include register al-
location [38]; scheduling [65]; frequency assignment prob-
lems [2]; and many other problems in wireless network-
ing [12]. In the case of boolean satisfiability, these include
formal verification of electronic circuits [82]; planning [90];
and computer-aided mathematical proofs [64].

We seek a problem instance which can be solved using a
quantum computer in one day, but would take substantially
longer for a classical computer to solve. This raises the ques-
tion of how to be confident that the runtime of the classical al-
gorithm is indeed large (we cannot simply run the algorithm,
as by definition it would take too long). A strategy to achieve
this is to find a family of instances, parametrised by problem
size, which can be solved for small problem sizes in a reason-
able time, and where the runtime for larger problem sizes can
be extrapolated from these.

A straightforward way to satisfy this criterion is to choose
instances at random. Another advantage of using random in-
stances is that they are likely to be hard for classical algo-
rithms, as they have no structure that the algorithm can ex-
ploit. Indeed, in the case of graph colouring, even random in-
stances on around 80 vertices are already challenging for the
best classical algorithms [68]. We use the following models:

• k-colouring: pick a uniformly random (Erdős-Rényi)
graph on n vertices, where each edge is present with
probability 0.5. As n → ∞, the chromatic num-
ber χn,0.5 of such graphs has long been known to be
(1 + o(1))n/(2 log2 n) with high probability [23]. Em-
pirically, the estimate

χn,0.5 ≈
n

2 log2 n− 2 log2 log2 n− 1
, (1)

which is based on a small modification to the asymp-
totic formula in [80], seems to be an excellent predictor
of the mean chromatic number of a random graph (see
Figure 1). For n ≤ 200, this estimate is at most 24.

• k-SAT: choose m clauses, each of which contains k
variables. Each clause is picked independently and uni-
formly at random from the set of 2k

(
n
k

)
distinct clauses

containing k distinct variables. We aim to fix m such
that m/n ≈ αk, where αk is the threshold for k-SAT.
The threshold is the point αk such that, as n → ∞, a
random k-SAT formula on αn clauses will be satisfiable
with probability approaching 1 for α < αk, and unsat-
isfiable with probability approaching 1 for α > αk. It
has long been predicted theoretically, and verified ex-
perimentally, that random k-SAT instances around the
satisfiability threshold will be very challenging [35].

Here we applied efficient quantum algorithms with rig-
orous performance bounds to these random instances of k-
colouring and k-SAT problems, carried out a detailed analysis
of their performance (including overheads for fault-tolerance),
and compared them against leading classical competitors. We
considered two (families of) general-purpose quantum algo-
rithms: Grover’s algorithm [57] for accelerating unstructured
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FIG. 1. Blue solid line: the mean chromatic number of 1000 random
graphs on n vertices with edge probability 1/2. Red dashed line: es-
timate from (1). For n ≥ 20, all 1000 graphs had chromatic number
within ±2 of the estimate.

search, and a quantum algorithm for accelerating the general
classical algorithmic technique known as backtracking [76].
Each of these algorithms achieves a near-quadratic reduc-
tion in computational complexity compared with its classical
counterpart (that is, if the classical runtime is T , the dominant
component of the quantum runtime scales like

√
T ) and has a

rigorous correctness proof.
In the case of k-SAT, we compared the performance

of these two algorithms against the performance of the
Maple LCM Dist SAT solver, which was the winner of the
SAT Competition 20172 [14]. We evaluated the performance
of this solver on many random instances, for different val-
ues of k, to estimate its runtime scaling with the number of
variables n. We then calculated the complexity of highly opti-
mised versions of Grover’s algorithm and the quantum back-
tracking algorithm applied to this problem. In order to solve
the largest instances possible while meeting the runtime re-
quirement, the algorithms are optimised to perform as many
operations in parallel as possible, and hence minimise their
circuit depths.

In the case of graph k-colouring, we compared against the
commonly used (“de facto standard” [91]) DSATUR algo-
rithm [28] (see Section VI). This is a backtracking algorithm
itself, so can be accelerated directly via the quantum back-
tracking algorithm. In this case, Grover’s algorithm is not ap-
plicable, as for relevant values of k the runtime of DSATUR
is empirically exponentially faster than the O(kn/2) runtime
scaling that would be achieved by Grover’s algorithm applied
to k-colouring.

2 A modified version of this solver was also the winner of the 2018 competi-
tion.
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FIG. 2. The runtime (circuit depth) of the quantum algorithm for
backtracking is of the form f(n, k)

√
T , where T is the number of

nodes in the backtracking tree. Figure illustrates scaling of f(n, k)
with n when k is chosen according to (1).

In Figure 2 we illustrate the depth overhead of our opti-
mised k-colouring algorithm versus the input size n. For rea-
sonable graph sizes (e.g. n ∈ {100, . . . , 200}) it is less than
4× 106, and hence not substantially greater than the overhead
of the SHA-256 hash function implemented in [8]. We stress,
however, that the algorithm has been optimised for depth, and
the number of logical qubits that it uses is large (� 105 for
reasonable problem sizes).

We obtain the result that for both k-SAT and k-colouring,
substantial quantum speedups could be possible: in the case of
k-SAT, in the most optimistic regime we consider, the speedup
could be as large as a factor of over 105, compared with a stan-
dard desktop computer. (That is, to solve an instance solved
by the quantum algorithm in one day, the classical algorithm
running on a standard computer would need over 105 days.)
In the case of k-colouring, speedups by a factor of over 104

could be possible. However, the extent of these speedups is
strongly dependent on the details of the hardware parameters,
and the overhead for error-correction. In other regimes for
these, there is no quantum speedup at all. In addition, the
number of physical qubits required to obtain these speedups
is very large (e.g. over 1012). This is largely caused by the
need for many large “factories” to operate in parallel to pro-
duce high-quality magic states, which are used to implement T
gates and Toffoli gates fault-tolerantly in the error-correcting
code used (the surface code [53]). A related issue is that this
speedup does not take into account the cost of classical pro-
cessing in the quantum error-correction process, which should
also be considered to obtain a true cost comparison (see Sec-
tion VIII). When we include an estimate for the cost of the
classical processing power required to perform decoding of
the surface code using current techniques, the quantum advan-
tage disappears. Thus, improvements to fault-tolerance meth-
ods are likely to be required if such speedups are to be realised
in practice.
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N \ ε 10−3 10−4 10−5

1012 4.10× 107 4.22× 106 8.98× 105

1018 2.45× 108 9.86× 106 2.30× 106

1024 4.51× 108 4.60× 107 4.69× 106

TABLE III. Representative spacetime costs (measured in units of sur-
face code cycles × physical qubits) to implement one Toffoli gate,
assuming gate error rate ε and a circuit of N Toffoli gates. Calcu-
lated using method described in Appendix A. 1024 gates is a gener-
ous upper bound on the number of Toffoli gates that can be executed
in 1 day (corresponding to > 109 qubits at a clock speed of 1GHz).

In order to state our results more precisely, we must de-
scribe the model and methodology used to calculate the cost
of a quantum computation.

A. Timing and cost model

Here we outline our resource methdology, which follows a
model developed by several previous works in this area [3, 8,
10, 53, 78]. The model assumes that the quantum computa-
tion is encoded using the surface code [53], a quantum error-
correcting code with properties that make it an excellent can-
didate for implementation on near-term hardware platforms
(e.g. high fault-tolerance threshold, implementability via local
operations). Then the cost of a computation can be calculated
via the following sequence of steps:

1. Determine the cost of the quantum circuit, in terms of
the number of gates used and the circuit depth.

2. Calculate the number of physical qubits required for the
logical computation, and the physical depth.

3. Insert hardware-dependent parameters for clock speed
and other variables to compute a physical runtime. Ac-
cording to the runtime requirement, this should be at
most 1 day, putting a limitation on the problem instance
size that can be solved.

4. Use the above to make a comparison between the cost
of quantum and classical computation.

When considering the cost of quantum circuits imple-
mented using the surface code, it is helpful to divide the circuit
into parts consisting of Clifford gates (which can be imple-
mented relatively straightforwardly) and non-Clifford gates
(which cannot). In the circuits that we consider, the non-
Clifford gates used are Toffoli and T gates.

Toffoli and T gates can be implemented fault-tolerantly us-
ing a state injection technique where a special state is prepared
offline (a Toffoli state [48, 61] or T state [26]), and then used
to implement the corresponding gate. We include in Appendix
A an algorithm for computing the costs associated with this,
based on the protocol of [48, 61] and using the analysis of [78]
(see also [3, 53]). Some illustrative spacetime costs are shown

in Table III for Toffoli gates, which dominate the complexity
of the circuits we consider; the values for T gates are similar.

For reasonable parameter ranges for the error rate ε and the
number N of Toffoli gates, and using standard protocols, the
number of qubits used by a single Toffoli-factory is between
104 and 106, and the depth of the factory is between 100 and
1000 surface code cycles. However, using more factories this
process can be parallelised, such that each new magic state is
available almost arbitrarily quickly. Using time-optimal meth-
ods [51], the limiting factor becomes only the time required to
inject a magic state, which is the time taken for a single phys-
ical measurement3.

The time complexity of the circuit is then governed by its
depth, considering only Toffoli or T gates. As a Toffoli gate
can be implemented using a single layer of T gates [89] or
injected directly from a Toffoli magic state, this is equal to
the “T-depth” of the circuit. The T-depth is defined as the
number of T-stages in a circuit, where a T-stage is a group of
T gates that can be performed simultaneously [7]. Each time
step corresponds to the cost of one measurement.

The parts of the circuit corresponding to Clifford gates can
also be implemented using state injection by preparing a par-
ticular graph state offline, then measuring all the qubits of this
state simultaneously. As the results of this measurement only
affect the interpretation of subsequent measurement results,
not which measurements are performed, it can be performed
in parallel with the implementation of a subsequent Toffoli or
T gate. Hence Clifford gates do not contribute to the time cost
of the circuit.

The drawback of implementing the circuit in this way is
that a large number of ancillas are used, though in practice
this ancilla cost is still small compared to the size of the magic
state factory. Making a detailed analysis of time-optimal im-
plementations of a Grover oracle, we found that the factory
comprised 95% − 99% of all physical qubits, so it is safe to
assume factory-dominated costs. There is a space-time trade-
off here and we have chosen to minimise time over space.

Some additional aspects which we do not take into account
in our cost calculations, for simplicity and because of their
hardware-specific nature, are:

• Any additional cost required to implement long-range
gates. This cost will depend on the underlying hardware
(e.g. certain architectures allow long-range gates, while
others are restricted to nearest-neighbour interactions),
and some apparently “long-range” gates can be imple-
mented efficiently in the surface code (e.g. controlled-
NOT gates with multiple targets).

• Any additional cost required to lay out and route qubits
physically within a desired spacetime volume. A dis-
cussion of these issues can be found in [10].

3 There is also a cost associated with performing a gate before the measure-
ment, but when multiple logical gates are performed, this cost becomes
negligible.



6

Realistic Plausible Optimistic
Max n 65 72 78
T-depth 1.46× 1012 1.65× 1013 1.32× 1014

Toffoli count 4.41× 1017 5.52× 1018 4.79× 1019

Factory qubits 3.14× 1013 5.15× 1012 1.38× 1012

Speedup factor 1.62× 103 1.73× 104 1.83× 105

TABLE IV. Likely speedup factors for 14-SAT via Grover’s algo-
rithm achievable in different regimes.

Realistic Plausible Optimistic
Max n 55 63 72
T-depth 1.63× 1012 1.43× 1013 1.63× 1014

T/Toffoli count 4.72× 1018 4.72× 1019 6.16× 1020

Factory qubits 3.85× 1014 5.03× 1013 2.17× 1013

Speedup factor 1.50× 101 3.92× 102 1.16× 104

TABLE V. Likely speedup factors for 12-SAT via backtracking
achievable in different regimes.

One way to address point 4 above, and find a basis for com-
paring the cost of classical and quantum computation, is to
consider the cost of the classical processing required to per-
form the quantum computation (and in particular to carry out
the calculations required for fault-tolerance). We discuss this
in Section VIII.

B. Summary of results

Now we have described the cost model, we summarise the
results obtained in Tables IV to VI. Each table column corre-
sponds to an extrapolation for the maximal instance size n that
can be solved by a quantum algorithm in one day, and includes
the parameters of this algorithm, and the speedup obtained.
These speedups are expressed as a multiple of the likely per-
formance of the DSATUR and Maple LCM Dist algorithms
running on a standard desktop computer in the cases of graph
colouring and SAT, respectively (see Section VII for more on
the classical experimental results, and the assumptions made).
We stress that these figures are sensitive to the precise assump-
tions made about the classical algorithm’s scaling and hard-
ware performance, as well as to certain assumptions (detailed
below) about the quantum algorithms’ performance on ran-
dom instances4. However, any reduction in performance due
to a change in these assumptions can be offset by allowing the
quantum algorithm to run for longer.

4 The runtime of the quantum algorithm for graph colouring experiences a
small overhead that varies depending on the instance (see Section VII B),
and the complexity of a circuit synthesis step used in the algorithm is also
problem-dependent [22] (see Section IV G).

Realistic Plausible Optimistic
Max n 113 128 144
T-depth 1.70× 1012 1.53× 1013 1.62× 1014

T/Toffoli count 8.51× 1017 1.02× 1019 1.28× 1020

Factory qubits 6.50× 1013 9.54× 1012 3.69× 1012

Speedup factor 7.25× 100 5.17× 102 4.16× 104

TABLE VI. Likely speedup factors for graph colouring via back-
tracking achievable in different regimes.

If there were no need for fault-tolerance at all, the runtime
of the algorithm would be determined only by the time re-
quired for 2-qubit gates, which is somewhat faster than the
measurement time in Table I, so the speedup factor would
likely be somewhat larger.

The results in Tables IV to VI were obtained by using com-
puter programs to calculate the complexity of the various al-
gorithms used (in terms of T-depth and T-count) for different
parameter values. We then chose parameters that produced
the largest speedups, while respecting the constraint that the
quantum algorithm should run for at most one day. For ex-
ample, in the case of k-SAT and Grover’s algorithm, choosing
k = 14 led to the largest quantum speedup. All code devel-
oped, together with the experimental results for the classical
algorithms, is available at [1].

The largest potential speedup factor found is reasonably
large in the “Plausible” scenario, and very large in the “Op-
timistic” scenario; over 105 in the case of applying Grover’s
algorithm to random 14-SAT, and over 4 × 104 in the case
of determining colourability of a random graph with 144 ver-
tices. However, the number of physical qubits used is very
large, which (as discussed in Section VIII) implies a concomi-
tant increase in the cost of classical processing, which could
erase this advantage. This strongly motivates the design of
improved fault-tolerance strategies. Observe that this over-
head could be mitigated somewhat at the expense of allowing
a longer runtime.

It is interesting to note that, in the case of k-SAT, the quan-
tum backtracking algorithm achieves worse performance than
straightforward use of Grover’s algorithm. This is because of
lower-order terms in the runtime (cf. Tables VII and IX be-
low); although the backtracking algorithm will be more effi-
cient for large problems, Grover’s algorithm is faster for the
problem sizes that can be solved in one day.

C. Organisation and notation

In the remainder of this paper, we give the technical details
behind the calculations reported in Tables IV to VI. First, in
Sections II and III, we describe the variants of Grover’s al-
gorithm and the backtracking algorithm that we use. In Sec-
tion IV, we discuss the detailed implementation decisions and
optimisations that go into calculating the backtracking algo-
rithm’s complexity in the case of graph colouring. Section
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V describes the modifications that need to be made to ap-
ply the algorithm to k-SAT. Section VI describes the classi-
cal DSATUR algorithm, while Section VII gives the results of
the classical experiments to determine the empirical complex-
ity of Maple LCM Dist and DSATUR. Section VIII discusses
how to estimate the cost of quantum computation in terms of
classical processing. We finish in Section IX with conclusions
and further discussion.

We use certain notation throughout the paper. All logs are
base 2 and [n] denotes the set {1, . . . , n}. We use n for the
number of variables in a constraint satisfaction problem, and
m for the number of constraints (edges in the case of colouring
problems, clauses in the case of k-SAT). In the case of the
graph colouring problem, we also write r = dlog(k + 1)e,
s = dlog(n+1)e. These represent the number of bits required
to store an element of [k] ∪ {∗}, {0, . . . , n} respectively.

II. GROVER’S ALGORITHM

Given access to an oracle function f : [N ] → {0, 1},
Grover’s quantum search algorithm can be used to find x
such that f(x) = 1, or output that no such x exists, using
O(
√
N) evaluations of f [24, 57], with arbitrarily small fail-

ure probability δ. The algorithm is based on “Grover itera-
tions”, each of which can be written as DOf , where D is a
fixed “diffusion operator” and Of is an oracle operator per-
forming the map |x〉|y〉 7→ |x〉|y ⊕ f(x)〉. If the size S of the
set {x : f(x) = 1} is known in advance, the optimal number
of Grover iterations to maximise the success probability can
be calculated in advance; otherwise, one can show that run-
ning the algorithm using varying numbers of iterations (e.g.
exponentially increasing, or random) is sufficient to solve the
unstructured search problem. A precise analysis by Zalka [96]
of one variant of the algorithm showed that, to achieve failure
probability δ, it is sufficient to carry out at most

1.582
√
N ln 1/δ (2)

iterations5. This is close to optimal, as even under the promise
that S = 1, Ω(

√
N) evaluations of f are required to find the

unique x such that f(x) = 1 with high probability [19, 97].
Here we will choose δ = 0.1, where we obtain an upper bound
of 3.642

√
N iterations. (For this value of δ, a lower bound of

about 0.625
√
N iterations can be derived from the tight bound

for the special case S = 1, also shown by Zalka [97].)
Assuming that N = 2n for some integer n (as is the case

for k-SAT), the diffusion operation can be implemented using
a layer of Hadamard gates on every qubit, followed by a Tof-
foli gate controlled on all n bits, with target an ancilla bit in
the state 1√

2
(|0〉 − |1〉), and then another layer of Hadamard

gates. The majority of the complexity in the algorithm there-
fore comes from the purely classical oracle operation f .

5 This is the “simple algorithm” in [96]; a different algorithm presented
in [96] would be more efficient for small δ.

Input: x ∈ {0, 1}n.
Ancillae: m-qubit register A.

1. Fan-out x to m copies.

2. In parallel, for each clause c: set Ac to 1 if x satisfies
clause c.

3. Set the output bit to 1 if Ac = 1 for all c.

4. Uncompute A.

5. Fan-in x back to 1 copy.

Algorithm 3. Check whether x violates any clause in a k-SAT for-
mula φ with m clauses.

In the case of k-SAT, the oracle needs to output 1 if and
only if the input x satisfies all clauses c in φ. This is an m-
wise AND function of OR functions of k bits each (and some
additional NOT operations). There is a straightforward algo-
rithm for implementing this depth-efficiently, which is stated
as Algorithm 3. The key point is that to check all the clauses
in parallel, x needs to be fanned out to multiple copies, be-
cause two gates cannot be performed on the same qubit at the
same time. Note that for random formulae, m will usually be
an overestimate of how many copies of each bit are required,
because clauses that involve disjoint sets of variables can be
checked at the same time. In the best case, the clauses could be
grouped into approximately mk/n sets of n/k clauses, where
the clauses in each set could be checked simultaneously. This
would lead to mk/n copies of each bit being required.

We can now calculate the complexity of Grover’s algorithm
for particular choices of k, m and n. The algorithm consists
of Toffoli gates and Clifford gates. We ultimately will be con-
cerned with measuring the Toffoli depth and Toffoli count,
with our primary goal being to minimise Toffoli depth (as this
controls the runtime of the overall computation).

Each Toffoli gate controlled on c ≥ 2 bits can be imple-
mented using a circuit containing 2c−3 standard Toffoli gates
arranged into 2dlog ce− 1 layers in a tree structure. However,
almost half of these gates can be replaced with classically con-
trolled Clifford gates using the “uncompute AND” operation
described in [56], to give a circuit containing c − 1 Toffoli
gates. This does not change the measurement depth of the re-
sulting circuit, as the classically controlled Clifford operation
itself requires a measurement.

The operation of fanning out a single bit b to c copies can be
implemented via a tree of CNOT operations of the following
form, illustrated for c = 8:

|b〉 • • • |b〉
|0〉 • • |b〉
|0〉 • |b〉
|0〉 • |b〉
|0〉 |b〉
|0〉 |b〉
|0〉 |b〉
|0〉 |b〉
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Line Operation T-depth Toffoli count
1, 5 Fan-out / fan-in 0 0
2, 4 Check clauses and uncompute 14 2.3× 107

3 AND of all clauses 39 8.9× 105

Total 53 2.4× 107

TABLE VII. Representative complexities in the Grover oracle oper-
ation for k = 14, n = 78, m = 885743.

The depth of the circuit is dlog ce, and it uses c − 1 CNOT
gates and no other gates. However, in the surface code a fan-
out operation (equivalently, a CNOT gate with multiple target
bits) can be executed in the same time as required for one
CNOT gate [53]. So we assign this operation the same cost
as one CNOT gate, which in any case is 0, when considering
Toffoli depth and Toffoli count.

Combining all the components of Algorithm 3, the Toffoli
depth is

4d(log k)− 1e+ 2d(logm)− 1e+ 3

and the Toffoli count is m(2k + 1)− 3.
The complexities of the various parts of the oracle opera-

tion are summarised in Table VII for a particular choice of
parameters. It is obvious that the Toffoli depth is very low,
while the Toffoli count seems very high in comparison. It is
not clear that this could be reduced by more than an order of
magnitude or so, though, given that there needs to be at least
one Toffoli gate per clause (controlled on k bits).

III. BACKTRACKING ALGORITHMS

Some of the most effective and well-known classical algo-
rithms for graph colouring and boolean satisfiability are based
on the technique known as backtracking [41, 42, 88, 91]. This
approach can be applied to any constraint satisfaction prob-
lem where we have the ability to rule out partial solutions that
have already failed to satisfy some constraints (e.g. partially
coloured graphs where two adjacent vertices share the same
colour). The basic concept behind this algorithm, in the con-
text of graph colouring, is to build up a colouring by trying to
assign colours to vertices. If a conflict is found, the colour is
erased and a different colour is tried.

The skeleton of a generic backtracking algorithm that
solves a k-ary CSP defined by a predicate P and a heuristic
h is given in Algorithm 4. P determines whether a partial as-
signment already violates a constraint, whereas h determines
the next variable to assign a value in a given partial assign-
ment. Define D := ([k] ∪ {∗})n, where the ∗’s represent the
positions which are as yet unassigned values.

Backtracking algorithms can be seen as exploring a tree
whose vertices correspond to partial solutions to the CSP. In
the case where no solution is found, the runtime of the al-
gorithm is determined by the size T of this tree (along with
the cost of computing P and h). A quantum algorithm was

Assume that we are given access to a predicate P : D →
{true, false, indeterminate}, and a heuristic h : D →
{1, . . . , n} which returns the next index to branch on from a
given partial assignment.
Return bt(∗n), where bt is the following recursive procedure:
bt(x):

1. If P (x) is true, output x and return.

2. If P (x) is false, or x is a complete assignment, return.

3. Set j = h(x).

4. For each w ∈ [k]:

(a) Set y to x with the j’th entry replaced with w.

(b) Call bt(y).

Algorithm 4. General classical backtracking algorithm (see [76])

described in [76] which solves the CSP with bounded failure
probability in time scaling with

√
T , up to some lower-order

terms. Two variants of the algorithm were given, with differ-
ing runtimes and preconditions. The first detects the existence
of a solution and requires an upper bound on T . The second
outputs a solution (if one exists) and does not require an upper
bound on T ; the price paid is a somewhat longer runtime.

Theorem 1 ([76]). Let T be an upper bound on the num-
ber of nodes in the tree explored by Algorithm 4. Then there
is a quantum algorithm which, given T , evaluates P and h
O(
√
Tn) times each, outputs true if there exists x such that

P (x) is true, and outputs false otherwise. The algorithm uses
poly(n) space, O(1) auxiliary operations per use of P and h,
and fails with probability at most 0.01.

Theorem 2 ([76]). Let T be the number of nodes in the tree
explored by Algorithm 4. Then there is a quantum algorithm
which makes O(

√
Tn3/2 log n) evaluations of each of P and

h, and outputs x such that P (x) is true, or “not found” if no
such x exists. If we are promised that there exists a unique x0
such that P (x0) is true, there is a quantum algorithm which
outputs x0 making O(

√
Tn log3 n) evaluations of each of P

and h. In both cases the algorithm uses poly(n) space, O(1)
auxiliary operations per use of P and h, and fails with prob-
ability at most 0.01.

These algorithms are based on the use of a quantum walk
algorithm of Belovs [17, 18] to search efficiently within the
backtracking tree. Their failure probabilities can be reduced
to δ, for arbitrarily small δ > 0, at the cost of a runtime penalty
of O(log 1/δ).

There have been some subsequent improvements to these
algorithms. First, in the case where the classical algorithm
finds a solution without exploring the whole tree, its runtime
could be substantially lower than T . Ambainis and Kokai-
nis [6] showed that the quantum runtime bound can be im-
proved to Õ(

√
T ′n3/2), where T ′ is the number of nodes ac-

tually explored by the classical algorithm. Second, Jarret and
Wan [60] showed that the runtime of Theorem 2 can be im-
proved to Õ(

√
Tn) without the need for any promise on the



9

uniqueness of the solution6. Also, the quantum backtrack-
ing algorithm has been applied to exact satisfability prob-
lems [69], the Travelling Salesman Problem [77], and attack-
ing lattice-based cryptosystems [5, 81]. However, none of
these works precisely calculates the complexity of the algo-
rithm for specific instances.

Filling in the details of the backtracking algorithmic skele-
ton requires implementing the P and h operations. We now
describe how this can be done in the cases of k-colouring and
satisfiability:

• k-colouring: x ∈ {([k] ∪ {∗})n} represents a partial
k-colouring of G. P (x) returns true if x is a complete,
valid colouring of G; false if there is a pair of adja-
cent vertices in G that are assigned the same colour by
x; and indeterminate otherwise. One natural choice for
the heuristic h is to choose the uncoloured vertex which
is the most constrained (“saturated”), i.e. the one which
has the largest number of adjacent vertices with differ-
ent colours [28].

• k-SAT: x ∈ {0, 1, ∗}n represents a partial assignment
to variables in the formula. P (x) returns true if x is a
complete, valid assignment; false if there exists a clause
that x does not satisfy; and indeterminate otherwise. A
simple choice of h is to order the variables in advance
in some sensible way, and then to return the lowest in-
dex of a variable that has not yet been assigned a value.
Here we ordered variables in decreasing order of the
number of times they appear in the formula.

In the case of k-SAT, one could also consider dynamic
strategies for h (e.g. choosing the variable that occurs in the
largest number of clauses in the formula produced by substi-
tuting in the assigned values to variables, then simplifying).
However, although these could give improved complexities
for large instances, they seem likely to lead to larger runtime
overheads per operation, so we did not consider them here.
Conversely, in the case of k-colouring, one could consider
static strategies for h (e.g. choosing the highest-degree un-
coloured vertex first). In our experiments, these seemed to be
less efficient.

Undertaking a full analysis of the complexity of the back-
tracking algorithm then requires calculating the complexity of
the P and h operations in detail, together with the complexity
of the remaining operations in the algorithm. We do this in the
next section.

6 Their result is in fact stronger than this, as they show that n can be replaced
with a quantity depending on the maximum “effective resistance” of sub-
trees, which is upper-bounded by n but might be smaller. On the other
hand, the Õ notation hides a term logarithmic in the number of solutions,
which can be very large.

IV. BACKTRACKING ALGORITHM COMPLEXITY
OPTIMISATION

For simplicity in the analysis, and to allow for future the-
oretical developments that may improve the runtime of the
algorithm, we consider the simplest version of the backtrack-
ing algorithm of [76]: the algorithm that detects the existence
of a marked vertex, given an upper bound on the number of
vertices T in the backtracking tree. (In practice, it may not
be realistic to have access to such an upper bound; however,
given a known distribution on problem instances, one could
choose a bound that is expected to hold for most instances,
for example.)

The algorithm is based on the use of a quantum walk to
detect a marked vertex within a tree containing T nodes. A
marked node corresponds to a valid solution. Abstractly, the
quantum walk operates on the Hilbert space H spanned by
{|r〉} ∪ {|x〉 : x ∈ {1, . . . , T − 1}}, where r labels the root.
The walk starts in the state |r〉. Let A be the set of nodes an
even distance from the root (including the root itself), and let
B be the set of nodes at an odd distance from the root. We
write x→ y to mean that y is a child of x in the tree. For each
x, let dx be the degree of x as a vertex in an undirected graph.

The walk is based on a set of diffusion operatorsDx, where
Dx acts on the subspace Hx spanned by {|x〉} ∪ {|y〉 : x →
y}. The diffusion operators are defined as follows:

• If x is marked, then Dx is the identity.

• If x is not marked, and x 6= r, then Dx = I −
2|ψx〉〈ψx|, where

|ψx〉 =
1√
dx

(
|x〉+

∑
y,x→y

|y〉

)
.

• Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 =
1√

1 + drn

(
|r〉+

√
n
∑
y,r→y

|y〉

)
.

A step of the walk consists of applying the operator RBRA,
where RA =

⊕
x∈ADx and RB = |r〉〈r|+

⊕
x∈B Dx.

Then the detection algorithm from [76] is presented as Al-
gorithm 5.

We will mostly be interested in the complexity of the phase
estimation step. The outer repetition step can be performed
across multiple parallel runs of the algorithm, and hence does
not affect the overall runtime (circuit depth). However, it does
affect the overall cost of executing the algorithm, so we give
an estimate of K below.

A. Optimisation of phase estimation step

We first observe that the full phase estimation procedure is
not actually required in Algorithm 5; it is sufficient to distin-



10

Input: OperatorsRA,RB , a failure probability δ, upper bounds
on the depth n and the number of vertices T . Let β,K,L > 0
be universal constants to be determined.

1. Repeat the following subroutine K times:

(a) Apply phase estimation to the operator RBRA on
|r〉 with precision β/

√
Tn.

(b) If the eigenvalue is 1, accept; otherwise, reject.

2. If the number of acceptances is at least L, return “marked
vertex exists”; otherwise, return “no marked vertex”.

Algorithm 5. Detecting a marked vertex [76]

guish between the eigenvalue 1 and eigenvalues far from 1.
This holds by the following claim:

Claim 3 (See [76], proof of Lemma 2.4; also see [17, 18]).
If there is a marked vertex, there exists an eigenvector |φ〉 of
RBRA with eigenvalue 1 such that |〈φ|r〉|2 ≥ 1/2. Other-
wise, ‖Pχ|r〉‖ ≤ χ

√
Tn for any χ ≥ 0, where Pχ is the

projector onto the span of eigenvectors of RBRA with eigen-
values e2iθ such that |θ| ≤ χ.

To distinguish between these two cases, we can perform the
following algorithm:

1. Attach an ancilla register of m qubits, initially in the
state |0〉⊗m, to |r〉.

2. Apply H⊗m to the ancilla qubits.

3. Apply the operation
∑M−1
x=0 |x〉〈x| ⊗ (RBRA)x using

controlled-RBRA gates, where M = 2m.

4. Apply H⊗m to the ancilla qubits and measure them.

5. Accept if the outcome is 0m.

The quantum part of the algorithm is the same as the standard
phase estimation algorithm, but with the final inverse quan-
tum Fourier transform replaced with Hadamard gates, which
are negligible when calculating the overall complexity of the
algorithm. The total number of controlled-RBRA operations
used isM−1. Expanding |r〉 =

∑
j αj |φj〉 in terms of a basis

|φj〉 of eigenvectors of RBRA with corresponding eigenval-
ues e2iθj , where |φ0〉 corresponds to eigenvalue 1, the final
state before the measurement is

1√
M

∑
j

αj

(
M−1∑
x=0

e2iθjx|x〉

)
|φj〉,

so the probability p that the algorithm accepts is

1

M2

∑
j

|αj |2
∣∣∣∣∣
M−1∑
x=0

e2iθjx

∣∣∣∣∣
2

=:
∑
j

|αj |2µj .

We see that, if |r〉 were an eigenvector with eigenvalue 1 (i.e.
α0 = 1) the algorithm would accept with certainty. If there is

a marked element, |〈φ0|r〉|2 ≥ 1/2 by Claim 3, so the algo-
rithm accepts with probability at least 1/2.

In the case where there is no marked element, we split up
the sum over k to obtain

p =
∑

j,|θj |≤χ

|αj |2µj +
∑

j,|θj |>χ

|αj |2µj . (3)

Upper-bounding these sums now proceeds via a similar ar-
gument to standard calculations for phase estimation [39], but
we will attempt to find somewhat tighter bounds. We can eval-
uate

µj =
|1− e2iMθj |2

M2|1− e2iθj |2
=

sin2(Mθj)

M2 sin2 θj

by the formula for a geometric series. Clearly sin2(Mθj) ≤ 1,
and using sinx ≥ x− x3/6 we have

µj ≤
1

M2θ2j (1− θ2j/6)
.

We can now upper-bound p as

p ≤ χ2Tn+
1

M2χ2(1− χ2/6)
,

where we upper-bound the first sum in (3) using Claim 3 to
infer that

∑
j,|θj |≤χ |αj |

2 ≤ χ2Tn, and that µj ≤ 1; and
upper-bound the second sum using

∑
j |αj |2 = 1 and that the

upper bound on µj decreases with θj in the range [0, π/2].
We now optimise χ to find the best possible bound on p.

Assume that χ = a/
√
Tn, M =

√
Tn/b for some constants

a, b. Then the upper bound on p becomes

p ≤ a+
b

a(1− a2/(6
√
Tn))

= a+
b

a(1− o(1))
.

The minimum over a of a+b/a is 2
√
b, so we obtain an overall

bound that p ≤ 2
√
b(1+o(1)). In order to achieve a separation

from 1/2 in this case, it is sufficient to take b < 1/16; differ-
ent choices of b allow a tradeoff between the complexity of the
phase estimation step, and the number of times it needs to be
repeated in Algorithm 5. For the calculations here, we choose
b = 1/32. Given this, we can now calculate (numerically) the
value of K in Algorithm 5 required to obtain a desired proba-
bility of success. For b = 1/32, to achieve failure probability
δ = 0.1 it is sufficient to take K = 79. In this case the overall
cost of the algorithm, in terms of uses of controlled-RBRA, is
at most

K

b

√
Tn ≤ 2528

√
Tn, (4)

and the number of sequential uses of RBRA in the circuit is
at most 32

√
Tn. The above algorithm assumes that M is a

power of 2, but the algorithm can easily be modified to handle
the case where it is not, by replacing the use of H⊗m with an
operation creating a uniform superposition over M < 2m el-
ements. The cost of this operation and its inverse is negligible
in the context of the overall algorithm.
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Note that the “optimal” variant of phase estimation where a
different input state is used (rather than |+〉⊗m) does not seem
to achieve a significantly better bound when m is close to its
minimal value (see e.g. the analysis in [36]).

B. Efficient parallel implementation of RA and RB

To implement the RA and RB operations efficiently re-
quires some additional work. A full description of how these
operations can be implemented was given in [76] (Algorithm
3). Here, in Algorithm 6 we describe an essentially equiva-
lent algorithm for the case of k-colouring which can be im-
plemented more efficiently, and which computes operations
in parallel where possible. The algorithm as used for k-SAT
is similar, but simpler, and the modifications required for this
are described in Section V.

In Algorithm 6, D corresponds to inversion about the state
|ψ〉 =

∑
i∈{∗}∪[c+1] |i〉, and D′ corresponds to inversion

about a state |ψ′〉 of the form |ψ′〉 = α|∗〉+ β√
k

∑
i∈[c+1] |i〉.

The algorithm implements RA; the operation RB is similar,
but slightly simpler because the alternative diffusion map D′

does not need to be performed. Correctness can be checked by
tracking the effect of the algorithm on a computational basis
state; we omit the routine details.

The main points of comparison between Algorithm 6 and
the algorithm presented in [76] are:

• Both algorithms need to convert between two input rep-
resentations: one of the form (i1, v1), . . . , (i`, v`), rep-
resenting that variable ij is assigned value vj , and one
of the form x ∈ D, representing a partial assignment
with ∗’s indicating unassigned variables. This is neces-
sary because the first form allows efficient assignment
of a value to a variable, while the second allows efficient
checking against constraints. In Algorithm 6, this con-
version is performed once for both P and h, as opposed
to being done internally to each of P and h separately.

• The most complicated operations in the algorithm are
P and h. In Algorithm 6, they are executed in parallel,
and each of them in turn contains some operations per-
formed in parallel. To achieve this, copies of the input
need to be produced using fan-out operations.

• At each step of the algorithm, it is necessary to dif-
fuse over neighbours of nodes in the backtracking tree.
The algorithm in [76] achieves this by checking whether
P (x′) is false for each of the children x′ of the current
node x in turn, and only diffusing over those children
for which this is not the case. For simplicity and effi-
ciency, Algorithm 6 defers this check to when the child
nodes themselves are explored.

• The standard backtracking algorithm would have k chil-
dren for each node in the backtracking tree, correspond-
ing to the k colours available. However, to determine
colourability, it is more efficient (and equivalent) to

Input: Basis state |`〉|i1, v1〉|i2, v2〉 . . . |i`, v`〉|0, ∗〉 . . . |0, ∗〉
corresponding to an input assigning value vj to the ij’th vari-
able.
Ancillae: x ∈ D, a ∈ {∗}∪ [k], p ∈ {T, F, ?}, h ∈ {0, . . . , n},
c.

1. Convert input to x ∈ D, stored in ancilla register. If ` is
odd, ignore the pair (i`, v`) and instead swap i` with h
and swap v` with a.

2. Fan-out x to n(k + 1) copies.

3. In parallel: Evaluate the number of colours used in x,
stored in c register, and if ` is even, evaluate P (x), stored
in p register; if ` is even, evaluate h(x), stored in h reg-
ister;

4. If a 6= ∗, subtract 1 from `.

5. If p = F, invert the phase of the input.

6. If p = ?, and ` > 0, apply diffusion map D to a to mix
over c + 1 colours; if p =?, and ` = 0, apply diffusion
map D′ to a to mix over c+ 1 colours.

7. If a 6= ∗, add 1 to `.

8. In parallel: Uncompute c and p; if a = ∗, uncompute h.

9. Fan-in x back to 1 copy.

10. Unconvert x. If ` is odd, ignore the pair (i`, v`) and in-
stead swap a with v` and swap h with i`.

Algorithm 6. RA operation for k-colouring (optimised and paral-
lelised version of algorithm in [76]). Details of how the number of
colours is stored are given in Section IV H.

only allow the algorithm to choose a colour between
1 and c + 1 for each subsequent node to be coloured,
where c is the number of colours currently used. In
particular, this enforces the constraint that all colour-
ings considered include all colours between 1 and c′,
for some c′. This optimisation is used in the classical
DSATUR algorithm.

It remains to describe the steps of Algorithm 6 in more de-
tail, including the implementation of the P and h operations
for particular problems. The overall complexities of the var-
ious steps found are summarised in Table VIII and IX in the
cases of graph colouring and SAT, respectively, for choices
of parameters close to the limit of problem size that can be
solved in one day. The total scaling of the T-depth of RA with
problem size in the case of graph colouring is illustrated in
Figure 2.

C. Calculating circuit complexities

With the exception of step 6, all of the operations in RA are
completely classical, and can be described in terms of Tof-
foli gates controlled on m ≥ 0 bits (incorporating NOT and
CNOT gates). We use the same depth-efficient construction
of Toffoli gates controlled on m bits that was discussed in the
context of Grover’s algorithm. When RA is used, it is a con-
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Line Operation T-depth T/Toffoli count
1, 10 Conversion 160 1.7× 107

2, 9 Fan-out / fan-in 2 1.4× 103

3 Compute c 169 1.5× 103

Compute P (x) 94 9.5× 105

Compute h(x) 903 3.6× 106

6 Diffusion 1032 3.9× 103

8 Uncompute c 169 1.5× 103

Uncompute P (x) 94 3.0× 106

Uncompute h(x) 903 3.6× 106

4, 5, 7 Other operations 114 3× 102

Total 3114 2.6× 107

TABLE VIII. Representative complexities in the RA operation for
k-colouring with n = 136, k = 19.

Line Operation T-depth T/Toffoli count
1, 10 Conversion 144 2.5× 106

2, 9 Fan-out / fan-in 2 2.8× 102

3 Compute P (x) 87 1.0× 107

Compute h(x) 57 2.9× 102

6 Diffusion 98 1.4× 102

8 Uncompute P (x) 87 9.7× 106

Uncompute h(x) 57 2.9× 102

4, 5, 7 Other operations 106 2.9× 102

Total 524 2.3× 107

TABLE IX. Representative complexities in the RA operation for k-
SAT with k = 12, n = 71, m = 201518.

trolled operation itself, so we must add 1 to the number of
control lines used by all of its gates. In particular, to com-
pute the T-depth of the overall circuit we need to keep track
of the “CNOT depth” of RA. In the description of RA below,
for readability we do not include the additional control line
required, but we do include it when discussing T-depth and
Toffoli count. Also note that in some cases below, we do not
give formulae for the T-depth and Toffoli count, but compute
this via a program, available at [1].

Throughout the implementation, we represent an element of
the set [k]∪{∗} as a r := dlog(k+1)e-bit string, where ∗ cor-
responds to 0r. The ?, F, T values that the p register can take
are represented as 00, 01, 10, respectively. Where algorithms
for steps state usage of ancillas, this only encompasses those
required to describe the algorithm (i.e. subroutines within the
steps may use additional ancillas).

D. Conversion of input

In the first step of the algorithm, we need to convert an in-
put of the form (i1, v1), . . . , (in, vn) to a string x ∈ D. We
also need to ignore a particular pair (i`, v`) if ` is odd. An

Input: n pairs (ij , vj), h, a; ij , h ∈ {0, . . . , n}, vj , a ∈ [k] ∪
{∗}.
Output: x ∈ D.
Ancillae: n×(n−1)×(r+s)-qubit registerA; n×n×r-qubit
register B.

1. Fan-out each of the n pairs ij , vj to n copies, stored in
register A and the input register.

2. In parallel, for each pair p, q ∈ [n]:

(a) If ` is even or ` 6= p, and ip = q, copy vp to Bpq;

(b) If ` is odd and ` = p, swap ip with h and swap vp
with a.

3. In parallel, for each q: copy
∑

pBpq to xq .

4. Uncompute B and then A.

Algorithm 7. Conversion of input.

algorithm to do all of this is described as Algorithm 7. The
main idea behind the algorithm is to create an n × n array B
where Bpq stores vp if ip = q, and is otherwise zero (so, for
each p, Bpq is nonzero for at most one q). Then, for each q, if
such a nonzero element Bpq exists it is copied to xq .

We now describe each of the operations in Algorithm 7 in
more detail, and calculate their complexities. First, the fan-
out and fan-in operations are implemented in the same way
as in Grover’s algorithm. In step 1 of Algorithm 7, each bit
can be fanned out in parallel, so this operation corresponds to
n(r + s) parallel fan-outs of 1 bit to n bits.

To implement step 2, we can first use a Toffoli gate con-
trolled on s bits with a target of one ancilla bit to store whether
` = p (in the case of odd p; for even p, this is omitted). Then
to carry out step 2a, we perform r parallel bit copy operations
controlled on this bit being 0 and on ip = q (corresponding to
a Toffoli controlled on s+2 bits). Step 2b then consists of two
controlled-swap operations, each controlled on the ancilla bit,
which can be performed in parallel. Swapping pairs of bits
can be implemented as 3 CNOT gates. At the end of step 2,
we uncompute the ancilla bit.

For step 3, we need to copy the one non-zero element of
the n-element set Sq := {Bpq′ : q′ = q} to xq , for each q.
We could achieve this by a binary tree of addition operations
(qv) but a simpler method is to use a tree of CNOT gates. We
consider each set Sq in parallel, and each bit within elements
of this set in parallel too, corresponding to a sequence of n
bits containing at most one 1. For sequences of this form, their
sum is just the same as their sum mod 2. So, for each pair of
bits (bi, bj), we can copy their sum into an ancilla qubit with
the circuit

|bi〉 • |bi〉
|bj〉 • |bj〉
|0〉 |bi ⊕ bj〉

Using a binary tree of such addition operations, we can set
each bit of xq correctly in depth 4dlog ne (including the cost
of uncomputing to reset the ancillas), where all gates are
CNOT gates. As precisely n − 1 bitwise summation opera-
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Input: n copies of x ∈ D.
Output: ?, F, T (represented as 00, 01, 10)
Ancillae: m-qubit register A, n-qubit register B.

1. In parallel: for each edge e = (i, j) in G, check whether
xi = xj and xi 6= ∗. Set Ae to 1 if so (corresponding to
edge e being violated).

2. Set the second bit of the output register to 1 if any of the
bits of A are equal to 1.

3. In parallel: for each i ∈ [n], set Bi to 1 if xi = ∗.
4. If the second bit of the output register is 0, and Bi = 0

for all i, set the first bit of the output register to 1.

5. Uncompute B and A.

Algorithm 8. P (x): Checking violation of a constraint.

tions take place, the circuit uses n − 1 ancillas and 4(n − 1)
CNOT gates for each bit in each q. These quantities are multi-
plied by nr to obtain the overall ancilla and gate complexities.

In step 4 we finally need to uncompute the B and A regis-
ters, with the same complexities as computing them.

For large n, the T-depth of the circuit is dominated by steps
1, 3 and 4, and is approximately 6dlog ne. This will turn out
to be negligible in the context of the overall algorithm.

E. Evaluation of P (x): checking violation of a constraint

The algorithm for evaluating the predicate P in the case of
graph colouring is presented as Algorithm 8. The goal is to
check whether, given a partial assignment of colours to ver-
tices in a graph G, there exists an edge of G whose endpoints
are assigned the same colour. The output should be false if
so, true if there is no such edge and all vertices are assigned a
colour, and undetermined otherwise. We can hard-code the
edges of G into a quantum circuit for checking this, mak-
ing the algorithm quite straightforward. Steps 1 and 2 check
whether any constraint is violated, while steps 3 and 4 check
whether the partial assignment is complete. As we have access
to n copies of x, we can perform all the checks in parallel for
all edges, using a decomposition of the m ≤

(
n
2

)
edges into at

most n matchings, where the edges in each matching can be
checked in parallel.

In step 1, checking equality of 2 bits a, b can be done using
3 ancillas and 3 Toffoli gates, via the following circuit:

|a〉 • • |a〉

|b〉 • • |b〉

|0〉 • |¬(a ∧ b)〉

|0〉 • |¬(¬a ∧ ¬b)〉

|0〉 |a = b〉

These equality checks can be done in parallel across all the
bits of xi, xj , followed by an Toffoli gate controlled on the r

Input: kn copies of x ∈ D.
Output: Identity of the vertex labelled ∗ whose adjacent ver-
tices are labelled with the largest number of different colours.
Ancillae: n× n× k-qubit register A; n r-qubit registers Bi.

1. In parallel: for each triple (i, j, c) such that i is adjacent
to j, set Aijc = 1 if xj = c.

2. For each i, set Bi =
∑

c

∨
j Aijc.

3. Copy maxiBi into the output register.

4. Uncompute steps 2 and 1.

Algorithm 9. h(x): Choosing the next vertex.

equality test bits. The check xi 6= ∗ corresponds to at least one
of the bits of xi not being equal to 0, which can be checked
using a similar Toffoli, some NOT gates, and one more ancilla.
We then use one more Toffoli gate to write the AND of these
into bitAe. We do not need to uncompute the ancilla bits used
in these steps, as we will do this in step 5.

Step 2 can be implemented using a Toffoli gate controlled
on m qubits; step 3 can be implemented via n Toffoli gates in
parallel, each controlled on r bits; step 4 can be implemented
using a Toffoli gate controlled on n + 1 bits (together with
some NOT gates in each case).

F. Evaluation of h(x): choosing the next vertex

The algorithm for computing h(x) in the case of k-
colouring is presented as Algorithm 9. The goal of the al-
gorithm is to output the uncoloured vertex that is the most
constrained or “saturated” (has the largest number of adjacent
vertices assigned distinct colours).

Each of the operations performed in step 1 of the algorithm
corresponds to a Toffoli gate controlled on r bits (together
with some NOT gates). Similarly to the case of the P opera-
tion, they can all be performed in parallel, using copies of the
input x.

The most complicated part is the second and third steps.
The second step can be split into two parts. First, we initialise
an ancilla register Cic =

∨
j Aijc; then we set Bi =

∑
c Cic.

Each bit Cic can be set in parallel using a Toffoli gate con-
trolled on n qubits (and some NOT gates). Summing these bits
efficiently in parallel can be achieved via a binary tree of ad-
dition operations, where the tree is of depth dlog ne. The t’th
level of the tree sums approximately n/2t pairs of integers in
parallel, producing (t+1)-bit integers as output. The addition
operations themselves can be carried out using remarkably ef-
ficient out-of-place addition circuits presented by Draper et
al. [47]. Even for adding two 10-bit numbers, the depth of the
circuit given in [47] is only 11 (8 layers of which are made
up of Toffoli gates, the remainder of which contain CNOTs).
Here this can be reduced further by simplifying the circuit in
the earlier layers of the tree that compute smaller numbers,
and by observing that some layers of the circuit in [47] are
only used to uncompute ancilla bits, which are uncomputed
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Input: a ∈ [k] ∪ {∗}, p ∈ {?, F, T}, ` ∈ {0, . . . , n}, c ∈
{0, . . . , k}.
Output: Diffusion map applied to a.
Ancillae: qubits A, B, C initially in state |0〉.

1. Set B to 1 if ` = 0.

2. Set A to 1 if p = ? and B = 0.

3. If A = 1, perform D = VcU∗V
†
c on a.

4. If B = 1, set C to α|0〉+ β|1〉.
5. If B = C = 1, perform D on a.

6. If B = 1, perform a Hadamard gate on C.

7. If B = C = 1 and a 6= 0r , invert the phase of a.

8. If B = 1, perform a Hadamard gate on C.

9. Uncompute B and A.

Algorithm 10. Diffusion in backtracking tree (assuming k + 1 not a
power of 2). U∗, Vc, α, β are defined in the text.

anyway in step 4. Hence these layers can be omitted.
The third step can be achieved via a binary tree of

“compare-and-swap” operations. The n Bi values are split
into adjacent pairs. Then the efficient in-place comparator
also presented by Draper et al. [47] is used to determine which
element of each pair is larger. If they are out of order, they are
swapped, using a decomposition of a controlled-SWAP oper-
ation in terms of 3 Toffoli gates. The result at the end of the
tree is that the largest value is moved to the bottom, and we
can then copy it into the output register. We then need to re-
verse the rest of step 3 to put the elements of Bi back into
their original order before uncomputing steps 1 and 2.

G. Diffusion operations

In step 6 of the RA operation, we need to apply a dif-
fusion map D or D′ to the state of an ancilla register |a〉
of r qubits, controlled on some other qubits. See [30] for
a general discussion of how this can be achieved in quan-
tum walk algorithms. Recall that D corresponds to inversion
about the state |ψ〉 = 1√

c+2

∑
i∈{∗}∪[c+1] |i〉, and D′ cor-

responds to inversion about a state |ψ′〉 of the form |ψ′〉 =

α|∗〉 + β√
c+1

∑
i∈[c+1] |i〉. Further recall that we represent ∗

as 0r. First assume that c is fixed throughout (we will handle
c being given as input to the algorithm later).

The algorithm for achieving this map is described as Al-
gorithm 10. We begin by using two ancilla qubits A and B
to store whether (a) p = ?, and ` > 0; (b) ` = 0. If we
set B first, these can be implemented using Toffoli and NOT
gates controlled on 3 and s qubits, respectively. Controlled on
A, we apply D; controlled on B, we apply D′. Afterwards,
we uncompute the ancilla qubits. Note that, once the ancilla
qubits have been set, we do not need to access the overall RA
control bit again.

We first describe how to implement D. To do this, it is suf-

ficient to implement V such that V |∗〉 = |ψ〉. This is because
the combined operation V U∗V †, where U∗|∗〉 = −|∗〉 and
U∗|x〉 = |x〉 if x 6= ∗, maps |ψ〉 7→ −|ψ〉, |ψ⊥〉 7→ −|ψ⊥〉
as desired. U∗ can be implemented using a Toffoli gate con-
trolled on r qubits and an ancilla qubit in the state |−〉 =
1√
2
(|0〉 − |1〉).

Implementing V is easy if c = k−1 and k+1 is a power of
2 (and hence |ψ〉 = |+〉⊗r), by setting V = H⊗r. In the con-
text of the overall circuit, this corresponds to implementing r
copies of a controlled-Hadamard gate. An efficient Clifford+T
circuit for this gate is given in [20] which has T-depth 2 and
T-count 2, and uses no ancillas. The total resources required
to implement D are then only T-depth 2(dlog(r − 1)e+ 3, T-
count 10r − 9, and 2(r − 2) ancillas (excluding the ancilla in
the state |−〉, which can be reused from step 5 of RA).

If c < k − 1 or k + 1 is not a power of 2, we need to
reflect about a state that is not |+〉⊗r. We can do this using
just one iteration of the exact amplitude amplification trick of
Brassard et al. [25]. Let i be the smallest integer such that
c + 2 ≤ 2i. Then define H ′ = H ′′ ⊗ I⊗r−i ⊗ H⊗i, where
H ′′|0〉 = γ|0〉 + δ|1〉, and |γ|2 = 2i−2/(c + 2). Note that
this is well-defined, because c + 2 ≥ 2i−1. Then V can be
implemented using the following sequence of operations:

−H ′U∗(H ′)†U≤c+1H
′,

where U≤c+1 is an operation which inverts the phase of any
computational basis state corresponding to a value less than or
equal to c+ 1, and which leaves all other computational basis
states unchanged. By the standard analysis of amplitude am-
plification (where U≤c+1 is the “verifier” and H ′ is the guess-
ing algorithm) this will produce the state |0〉|ψ〉 when applied
to the state |0〉|0〉, as can be confirmed by direct calculation.

Many of the operations in V are quite efficient. To im-
plement the less-than checking step U≤c+1, we can use the
efficient comparison circuit of Draper et al. [47]. The other
operations are (controlled) single-qubit gates. The only one
which has not yet been discussed is H ′′. This is not straight-
foward to implement, as it requires approximate synthesis us-
ing Clifford and T operations. An arbitrary operation mapping
|0〉 to cos θ|0〉+ sin θ|1〉 can be written as THRH , for some
rotation R in the Z plane. It was shown in [22] that the mean
expected T-count to implement Z-rotations up to inaccuracy ε
using “repeat-until-success” circuits is≈ 1.15 log2(1/ε)+9.2.
In order to achieve a good overall level of accuracy for the
whole algorithm, we require ε to be upper-bounded by the
total number of uses of D in the circuit. This is at most
64
√
Tn by (4) and the text below it. In the algorithm we actu-

ally need a controlled-H ′′ operation (controlled on A). Using
a technique of Selinger [89], controlled-R and controlled-T
can each be implemented at an additional cost of T-depth 2
and T-count 8. So the expected overall cost of implement-
ing H ′′ is T-depth ≈ 1.15 log2(64

√
Tn) + 17.2, T-count

≈ 1.15 log2(64
√
Tn) + 29.2.

It remains to implement D′, which can be done as follows.
First, add another ancilla qubit C in the state |0〉 and map it
to the state α|0〉 + β|1〉 using a similar synthesis technique.
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Then use a controlled-D operation (controlled on C) to pro-
duce α|0〉|∗〉 + β|1〉 1√

k

∑
i∈[k] |i〉, followed by a Hadamard

gate on C to produce

1√
2

(
|0〉
(
α|∗〉+

β√
k

∑
i∈[k]

|i〉
)

+ |1〉
(
α|∗〉 − β√

k

∑
i∈[k]

|i〉
))
.

Next, conditional onC being in the state 1 and the other qubits
not being in the state 0r, the phase is inverted to produce the
state

1√
2

(
|0〉+ |1〉

)(
α|∗〉+

β√
k

∑
i∈[k]

|i〉
)
.

A final Hadamard gate on C restores it to its initial state.
We finally describe how to handle dependence on c. When

used in Algorithm 6, we can think of steps 3–8 of the over-
all diffusion operation as being provided with an input of the
form |c〉|A〉|B〉|a〉, where c specifies the number of colours
used in x. The goal is to apply an operation depending on
c (call this Dc) to |a′〉 := |A〉|B〉|a〉. Dc encompasses the
controlled-D and controlled-D′ operations above. This can
be achieved by attaching k−1 ancilla registers of r+2 qubits
each, where the i’th register is initially in a state |ei〉 which is
an eigenvector of Di with eigenvalue 1. These states can be
prepared in advance of the algorithm, so the cost of preparing
them is negligible in terms of the overall complexity. Then,
before step 3 in Algorithm 10, swap operations controlled on
c are used to swap |a′〉 with |ec〉, before applying Di to each
register i in parallel, and then swapping |a′〉 back into place.
This has the effect of applyingDc to |a′〉 and leaving the other
registers unchanged.

Rather than applying k − 1 controlled-swap operations se-
quentially, we can achieve a reduction in depth by storing all
binary prefixes of the r-bit string corresponding to c. We can
then use an r-step procedure where, at step i, the state |a′〉 is
swapped into a register labelled with the first i bits of c (with
the final register corresponding to |ec〉). These swap opera-
tions can all occur in parallel for different choices of prefixes
of length i − 1. We also only need to perform swaps for the
cases where ci = 1, because at the (i + 1)’th step we can
associate each register labelled with an i-bit string with the
corresponding (i + 1)-bit string ending in 0. The final result
is a “controlled-swap tree” of depth r.

H. Miscellaneous parts and overall bound

In step 3, we need to count the number c of colours used in
x, and also store whether each prefix of the binary string c (i.e.
each substring of the form c1 . . . ci) is equal to each possible
prefix (i.e. element of {0, 1}i). The algorithm for this is given
as Algorithm 11. The part that counts the number of colours
used in x is essentially a simplified version of Algorithm 9.
Then, to calculate the complexity of step 3 of Algorithm 11,
observe that there are

∑r
i=1 2i = 2r+1−1 non-trivial prefixes

of x, and checking each i-bit prefix can be achieved using a
Toffoli gate controlled on i bits.

Input: k copies of x ∈ D.
Output: The number c of colours used in x, and a bit-string e
checking equality to each prefix of the binary string correspond-
ing to c.
Ancillae: n× k-qubit register A.

1. In parallel: for each i, j, set Aij = 1 if xi = j.

2. Set c =
∑

j Aij .

3. For each possible prefix p of {0, 1}r , check equality of
the corresponding bits of c to p, and store the answer in
ep.

4. Uncompute step 1.

Algorithm 11. Counting the number of colours used in x.

In steps 2 and 9, we perform fan-out and fan-in operations,
whose complexities can be calculated similarly to step 1. In
steps 4 and 7, we need to perform a controlled decrement and
increment, controlled on a 6= ∗. These can be done by first
setting an ancilla qubit based on the r bits of a, then using
a controlled version of the in-place addition circuit of Draper
et al. [47] (hardcoding the first input to 1 or −1), and then
uncomputing the ancilla. We can reduce the complexity of the
circuit stated in [47] slightly by restricting to 8-bit integers
and observing that some of the gates can be removed because
of the input hardcoding. The total depth is then 14 layers of
Toffoli gates and 3 layers of CNOT gates, and the circuit uses
38 Toffoli gates and 25 CNOT gates.

The total T-depth of each of these two steps is thus at most

2× (2dlog re+ 1) + 3× 14 + 3 = 4dlog re+ 47.

Finally, in step 5, we need to invert the phase of the input if
p = F. This can be done using a Toffoli gate and one ancilla
qubit in the state 1√

2
(|0〉 − |1〉).

V. BACKTRACKING FOR k-SAT

The quantum backtracking algorithm can be applied to
boolean satisfiability (SAT) problems in much the same way
as for colouring problems. In the case of SAT, variables are
boolean; within the backtracking algorithm, this corresponds
to 2 bits being used to store each variable (we use ∗ 7→ 00,
F 7→ 01, T 7→ 10). As the P and h operations are sub-
stantially simpler than in the case of graph colouring, the run-
time of the algorithm is dominated by the diffusion operation,
whose cost in turn is dominated by the gate synthesis step
required. We can reduce the cost of this by observing that dif-
fusion becomes much simpler if each variable represents an
element of a set of size 2c − 1, for some integer c, so allow-
ing the two bits representing xi to take the fictitious value 11
makes this step more efficient. We must then modify the P
operation to check and reject this value. This increases the
cost of the P operation somewhat, and also increases the size
of the backtracking tree by a factor of 3/2. However, it is still
advantageous overall. Note that some gate synthesis is still
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Input: m copies of x ∈ D, where xi is represented by two bits.
Output: ?, F, T (represented as 00, 01, 10)
Ancillae: (m+ 1)-qubit register A, n-qubit register B.

1. In parallel: for each clause c in φ, check whether x vio-
lates c. Set Ac to 1 if so.

2. If xi = 11 for any i, set Am+1 to 1.

3. Set the second bit of the output register to 1 if any of the
bits of A are equal to 1.

4. In parallel: for each i ∈ [n], set Bi to 1 if xi = ∗.
5. If the second bit of the output register is 0, and Bi = 0

for all i, set the first bit of the output register to 1.

6. Uncompute B and A.

Algorithm 12. P (x) for SAT: Checking violation of a constraint.

required to implement the D′ operation used in RA.

A. Evaluation of P (x): checking violation of a constraint

The algorithm for checking whether any of the clauses is
violated is given as Algorithm 12. Checking whether x vio-
lates an individual clause can be achieved with just one Toffoli
gate, controlled on k bits (together with some additional NOT
gates). This is because we use 01, 10 to represent a variable
being set to false and true, respectively; so controlling on one
or other of those bits is enough to check for an assignment
being consistent with a literal in a clause.

Step 2 of the algorithm checks whether any of the bits of x
are equal to the fictitious value represented by the binary string
11. This can be achieved using an n-qubit ancilla register y,
such that bit yi is set to 1 if both of these bits are equal to 1,
using a Toffoli gate. Then Am+1 is set to 1 if any of the bits
yi are equal to 1, and then y is uncomputed.

Then steps 4 and 5 of the algorithm determine whether the
partial assignment x is complete. If the assignment is com-
plete, and not inconsistent with any of the clauses, the output
is set to true.

B. Evaluation of h(x): choosing the next variable

Given our simple choice of heuristic for k-SAT, the h func-
tion is also very simple: it returns `+1, which can be achieved
via copying ` and then incrementing it in place.

VI. CLASSICAL GRAPH COLOURING ALGORITHMS

Graph colouring algorithms can be categorised as either
heuristic or exact. Heuristic algorithms aim to output a “good”
colouring (one with a low number of colours) without proving
optimality, while exact algorithms allow the impossibility of
colouring with a certain number of colours to be certified. In

this work the focus is on exact algorithms, corresponding to
problems for which it is crucial to determine optimality. For
example, a wireless communication problem where it is ex-
tremely expensive to use unnecessarily many frequencies (we
might imagine that there is a fixed allocation of bandwidth
across all cells in a wireless communication system, so hav-
ing more colours would correspond to each cell having lower
bandwidth). A vast array of heuristic algorithms for graph
colouring has been proposed; for a relatively recent survey of
these (and exact algorithms), see [68].

The idea of choosing a vertex to colour that is the most “sat-
urated” was proposed by Brélaz in 1979 [28] as a heuristic,
called DSATUR, for finding a good colouring. This idea can
also be used as part of a backtracking algorithm, also called
DSATUR. The full algorithm, incorporating an optimisation
due to Sewell [91], can be summarised as follows:

1. Find a large (though possibly non-maximal) clique in
the graph via an efficient algorithm, and colour the ver-
tices in that clique.

2. Perform the standard backtracking algorithm with the
following heuristic h for choosing the next vertex to
colour:

(a) Choose the vertex which is adjacent to the largest
number of vertices with distinct colours.

(b) In case of a tie in (a), choose the vertex with the
largest degree.

(c) In case of a tie in (b), choose the lexicographically
first vertex.

The P function is defined to reject any partial colouring
that is invalid.

There are two simple further optimisations that are imple-
mented in standard versions of DSATUR [71]. The first is,
when the current partial colouring contains colours between
1 and c, to only consider colours between 1 and c + 1 for
colouring the next vertex. The second is not to assign a vertex
a colour that is already used by any of its neighbours. The for-
mer optimisation can be implemented in the quantum back-
tracking algorithm quite efficiently (see above), whereas the
latter seems less straightforward to achieve without incurring
a multiplicative loss of O(

√
k) in the complexity.

DSATUR can also be used to compute the chromatic num-
ber, rather than checking k-colourability. In this (more stan-
dard) variant, the number of colours used can be as large as
n. When a complete and valid colouring of the graph is found
that uses fewer colours than the best colouring found so far,
the number of colours it uses is stored and any further par-
tial colourings that use more than that number of colours are
rejected. Then the algorithm finally outputs the stored (mini-
mal) number of colours.

The clique-finding step, which affects the runtime very lit-
tle, can be implemented classically before the rest of the algo-
rithm is executed on the quantum computer. The tie-breaking
steps can be built into the h function presented in Section IV F
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with little extra effort, by sorting the vertices according to de-
gree before running the algorithm.

The DSATUR algorithm is very simple, but remains a com-
petitive approach for colouring random graphs, called a “de
facto standard” [91], performing “suprisingly well” and used
on small subproblems as part of other algorithms [88]. (For
large structured graphs, approaches based on expressing the
colouring problem as an integer program and solving this via
relaxations seem to be superior [68].) Further, a standard im-
plementation is available7, and this algorithm is widely used
as a benchmark in colouring competitions.

Additional modifications to the DSATUR algorithm were
suggested by Sewell [91] and San Segundo [88] which achieve
improved runtimes for certain graphs (e.g. up to about a factor
of 2 in results reported in [88]). Mehrotra and Trick presented
a new linear programming (LP) relaxation and compared it
against DSATUR [71]. Results were mixed; on some ran-
dom instances the LP relaxation substantially outperformed
DSATUR, and on others the reverse was true. For structured
instances, the LP approach was often (though not always) su-
perior. Mixed results are also seen in the comparison given
in [73] of DSATUR against a new branch-and-cut method: the
new method (which also uses DSATUR as a subroutine) usu-
ally, but not always, outperforms DSATUR itself. By contrast,
in the experimental results reported in [88], DSATUR always
outperforms a competitor branch-and-price algorithm on ran-
dom instances. Interestingly, despite significant progress on
the development of fast SAT solvers over recent years, the ap-
proach of encoding a graph colouring as a SAT instance and
solving it using a SAT solver does not seem to be particularly
effective for random graphs [54].

Given all the above results, together with the algorithm’s
ubiquity, we believe that DSATUR is a reasonable choice of
classical algorithm for benchmarking purposes.

VII. CLASSICAL EXPERIMENTAL RESULTS

In order to determine the likely performance on large in-
stances of the classical algorithms considered, and to calculate
the quantum backtracking algorithm’s likely performance, we
evaluated the classical algorithms on many random instances
to determine their runtime scaling with problem size. We now
describe the results of these experiments.

A. Satisfiability

We ran the Maple LCM Dist SAT solver, the winner of the
“main track” of the SAT Competition 2017 [14], on randomly
generated instances of k-SAT, for various choices of k. Ex-
periments were run on an Intel Core i7-4790S CPU operat-
ing at 3.20GHz with 7GB RAM. We generated the random

7 http://mat.gsia.cmu.edu/COLOR/solvers/trick.c

k αk Exponent nmax

3 4.27 0.03n− 4.88 425
4 9.93 0.11n− 7.10 132
5 21.12 0.20n− 7.85 84
6 43.37 0.23n− 7.38 60
7 87.79 0.34n− 9.51 54
8 176.54 0.42n− 11.12 47
9 354.01 0.55n− 13.51 41

10 708.92 0.55n− 12.96 41
11 1418.71 0.55n− 12.00 36
12 2838.28 0.56n− 10.86 37
13 5677.41 0.55n− 9.39 36
14 11355.67 0.51n− 6.55 33
15 22712.20 0.46n− 4.38 31

TABLE X. Estimated runtime scaling with n of the Maple LCM Dist
SAT solver on random k-SAT instances with n variables and ≈ αkn
clauses. Table lists suspected exponents f(n) in runtimes of the
form 2f(n), measured in CPU-seconds. Based on taking linear least-
squares fits to the log of median runtimes from ≥ 100 random in-
stances, omitting instances where n < 100 for k = 3; n < 60 for
k = 4; n < 50 for k = 5. nmax column lists the maximal value of
n considered in each case.

10 15 20 25 30 35 40
n

10 2

10 1

100

101

102

103

M
ed

ia
n 

ru
nt

im
e 

(s
)

k=9
k=10
k=11
k=12

Figure 13. Runtime of the Maple LCM Dist SAT solver on random
k-SAT instances with n variables and ≈ αkn clauses. Solid line
represents the median of at least 100 runs, in CPU-seconds. Dashed
lines are linear least-squares fits.

instances using CNFgen, a standard tool which picks k-SAT
instances according to the distribution described in Section I.
For each k and n, we chose a number of clauses m such that
m ≈ αkn, where αk is the threshold for k-SAT. The value of
the threshold is not known precisely for all k. Indeed, it was
only recently shown rigorously that a sharp threshold exists
for large k [46]; for small k ≥ 3 this is still unknown. The
tightest bound known for general k is that

2k ln 2− 3 ln 2

2
−o(1) ≤ αk ≤ 2k ln 2− 1 + ln 2

2
+o(1), (5)

http://mat.gsia.cmu.edu/COLOR/solvers/trick.c
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Figure 14. Median runtime, in CPU-seconds, of 100 runs of the
Maple LCM Dist SAT solver on random 3-SAT instances with n
variables and ≈ 4.267n clauses.

where the o(1) terms approach 0 as k → ∞ [40]. Non-
rigorous predictions for the threshold in the range 3 ≤ k ≤ 7
obtained via the “cavity method” are given in [74]. Here we
used these predictions as our estimates for αk for k ≤ 7. In the
range 8 ≤ k ≤ 10, we used the (non-rigorous) upper bounds
α
(7)
c given in [74, Table 1], while an approximate threshold in

the range k > 10 can be found via the third-order approxima-
tion given in [74, Appendix]. For large k, this approximation
rapidly approaches the upper bound in (5). This method does
not guarantee that we have found a good approximation to the
true threshold αk; however, the level of accuracy of this ap-
proximation seems to be sufficient for the small input sizes
that we were able to consider. It could also be possible that
another choice of αk away from the threshold could produce
even harder instances for the Maple LCM Dist solver.

For each value of n considered, we ran the solver on at
least 100 random instances and took the median runtime. The
estimated scaling parameters for each k are listed in Table X,
and examples of the results for k ∈ {9, . . . , 12} are shown in
Figure 13. Note that, given that we only consider relatively
small values of n, we cannot rule out that the runtime does
not simply scale as a function f(n) = 2an+b for some a, b ∈
R. For example, in the case k = 3, the runtime behaviour
seems to be more complex in the range that we considered
(see Figure 14).

In the case of backtracking, we evaluated the size of the
backtracking tree produced for the standard backtracking al-
gorithm applied to random k-SAT instances where the heuris-
tic h chooses the next variable from a variable ordering fixed
in advance, in order of number of appearances (that is, the
variable that appears in the largest number of clauses is cho-
sen first). Some previous comparisons of static variable order-
ing strategies for solving CSPs have been made in [11, 43]. A
good static ordering strategy can produce substantially smaller
backtracking trees than choosing the variables in a fixed order
that does not depend on the problem instance (see [29, 76] for

k αk Exponent
3 4.267 0.35n+ 3.70

4 9.931 0.46n+ 3.65

5 21.117 0.54n+ 3.52

6 43.37 0.60n+ 3.46

7 87.79 0.64n+ 3.45

8 176.54 0.68n+ 3.43

9 354.01 0.70n+ 3.46

10 708.92 0.72n+ 3.52

11 1418.71 0.74n+ 3.61

12 2838.28 0.75n+ 3.68

13 5677.41 0.76n+ 3.81

14 11355.67 0.78n+ 3.72

15 22712.20 0.79n+ 3.76

TABLE XI. Estimated backtracking tree size on random k-SAT in-
stances with n variables and ≈ αkn clauses, when variables are or-
dered in terms of appearance count. Table lists suspected exponents
f(n) in tree sizes of the form 2f(n). Based on taking linear least-
squares fits to the log of median runtimes, from: 15 random instances
and 10 ≤ n ≤ 30 for k ≤ 9; 7 random instances and 15 ≤ n ≤ 25
for 10 ≤ k ≤ 12; 5 random instances and 15 ≤ n ≤ 20 for
13 ≤ k ≤ 15 (omitting n = 15 in the case k = 15).
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Figure 15. Backtracking tree size when variables are ordered in terms
of appearance count. Solid line represents the median on random k-
SAT instances; number of runs as described in Table XI. Dashed lines
are least-squares fits.

analytic expressions for the expected size of the latter).

B. Graph colouring

We experimentally evaluated the DSATUR algorithm for
1000 random graphs in the range n ∈ {10, . . . , 75}, where
each edge is present with probability 0.5. As discussed in
Section VI, the algorithm can either be used to calculate the
chromatic number precisely, or to determine k-colourability
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Figure 16. Ratios between the number of nodes in the DSATUR
backtracking trees for computing chromatic number and checking k-
colourability, over 1000 random graphs for each n ∈ {30, . . . , 75}.
Solid line: median; dashed lines: 5th/95th percentiles.
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Figure 17. Number of nodes in the DSATUR k-colourability back-
tracking tree vs. runtime in CPU-seconds on a 3.20GHz Intel Core
i7-4790S processor. Scatter plot showing 1% of the 1000 random
graphs considered for each n ∈ {10, . . . , 75}. Line is a least-squares
fit.

for a fixed k (which matches what the quantum algorithm
achieves and is, in principle, easier). The second variant can
be obtained from the first by rejecting any colouring which
uses more than k colours. In order to determine a challenging
value of k for a given graph G, we first run the first variant of
DSATUR to calculate the chromatic number χ(G), then the
second variant with k = χ(G). In Figure 16, we verify that
for most random graphs, χ(G)-colouring is not significantly
easier than computing χ(G).

We also observe that, as expected, the number of nodes T
in the backtracking tree has a strong linear correlation with
the CPU time τ used (see Figure 17). Performing a least-

squares fit, we obtain that on a 3.20GHz Intel Core i7-4790S
processor, τ ≈ 2.50× 10−6T − 0.05, where τ is measured in
seconds. This corresponds to each node in the backtracking
tree being evaluated in ≈ 8000 CPU cycles. Although the
number of operations per node in the backtracking tree does
depend on n, the dependence is linear, so the scaling should
remain correct up to a factor of 3 or so for all reasonable graph
sizes. Therefore, T is a good proxy for the actual runtime of
the algorithm.

Next, we calculate how T scales with n. We compute both
the median value and the 90th percentile, where the latter aims
to provide an estimate for how the runtime will scale for the
most difficult graphs. As expected, these quantities scale ex-
ponentially with n. Performing a least-squares fit on log T
(omitting small values of n), we obtain that T ≈ 20.40n−7.43

for the median, and T ≈ 20.42n−6.20 for the 90th percentile;
see Figure 18. Throughout this work, we use the median to
compute the anticipated runtime of classical and quantum al-
gorithms on random graphs.

The quantum algorithm presented here can be seen as ac-
celerating a somewhat simplified version of DSATUR, with-
out an optimisation to rule out colours that are used by each
vertex’s neighbours. So, when computing an estimate for the
backtracking tree size of this simplified algorithm (to obtain a
corresponding estimate of the quantum algorithm’s runtime),
we should take into account the cost of not including this op-
timisation. This cost will vary depending on the input. Fur-
ther, DSATUR has two roles: for a graph with chromatic num-
ber k, it both finds a k-colouring, and rules out any (k − 1)-
colouring. The quantum algorithm, by contrast, only deter-
mines colourability. When comparing the two algorithms,
we therefore measure DSATUR searching for a k-colouring
against the simplified algorithm ruling out a (k−1)-colouring.

We expect the ratio of the tree sizes of the simplified al-
gorithm and the standard algorithm to usually be relatively
small (though perhaps growing slowly with n); it is always
upper-bounded by the number of colours. In some cases, the
simplified algorithm may have smaller tree size, because it
aims only to prove that a (k − 1)-colouring does not exist.
This effect is particularly significant in the case where the
clique-finding preprocessing step finds a k-clique, enabling
a (k − 1)-colouring to be ruled out immediately; this event is
quite common for small random graphs. Experimentally, the
median ratio of tree sizes varies for different choices of n; in
all experiments run, the ratio was less than 15. The median
ratio found for each n is plotted in Figure 19. It is apparent
that this varies and, for some fairly large values of n, fluctu-
ates below 4. As we aim to find a “best case” but fair scenario
for the quantum algorithm outperforming its classical coun-
terpart, we use a factor of 4 as our estimate of the penalty to
the quantum algorithm’s backtracking tree size. Put another
way, we are assuming that the algorithms are run on random
graphs for a “good” choice of n.
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Figure 18. Number of nodes in the DSATUR k-colourability back-
tracking tree. Median (solid) and 90th percentile (dashed) over 1000
random graphs for each n ∈ {10, . . . , 75}. Dotted lines are least-
squares fits for the range n ≥ 30.

10 20 30 40 50 60 70
n

0

2

4

6

8

10

Ra
tio

Figure 19. Median ratio between the number of nodes in the unopti-
mised DSATUR backtracking tree, as used in the quantum algorithm,
and the number of nodes in the optimised DSATUR backtracking
tree. Taken over 1000 random graphs for each n ∈ {10, . . . , 75}.

VIII. COST OF CLASSICAL COMPUTATION

Under some models, the quantum algorithms we consider
seem to achieve a substantial speedup over their classical com-
petitors. However, the depth-optimised algorithms we de-
scribe use substantial physical quantum resources. In order
to determine if we obtain a real-world reduction in cost, we
need to compare the cost of classical and quantum compu-
tation. Given that early quantum computers are likely to be
accessed remotely as a cloud service, perhaps a fair model
for comparison is to consider a cloud-based compute service
which charges by hour of CPU time. Then one can calcu-
late the number of CPU-hours required to solve the instance

which can be solved by the quantum computer in 1 day, al-
lowing a price to be put on “1 quantum CPU-hour”. See [70]
for a very recent example of a similar comparison in the con-
text of quantum computational supremacy experiments. The
classical algorithm used may not be perfectly parallelisable
across multiple machines; however, for the algorithms that
are typically used to solve hard constraint satisfaction prob-
lems in practice (e.g. backtracking, local search), a relatively
high level of parallelisation may be possible [83].

In order to make a fair cost comparison between the quan-
tum and classical machines, it is also necessary to take into ac-
count the cost of the classical processing used in the quantum
computer. For example, if each physical qubit requires one
classical CPU to carry out the error-correction computations
for the surface code, there are 106 qubits, and the computa-
tion takes 1 day, we could instead use these classical CPUs to
carry out a computation requiring 106 CPU-days. We there-
fore calculate the overall cost of the quantum computation in
terms of the classical CPU time8, and use the ratio between
this and the classical CPU time used as the quantum speedup
factor. Although this measure is a lower bound on the true
cost of the quantum computation (which should also take into
account issues such as power consumption), it is independent
of the details of the quantum hardware platform itself.

The classical processing required may not be carried out
using a standard CPU, but instead using a GPU or specialised
electronics (FPGAs or ASICs). The extent of the speedup that
might be possible by this approach can be estimated using Bit-
coin mining as a point of comparison. Current commercially
available hardware platforms based on ASICs can achieve a
hash rate of over 2 × 1013 hash function evaluations per sec-
ond9, as compared with a rate of around 2× 109 for a GPU or
107 for a CPU. The best average runtime reported for a recent
near-linear time decoding algorithm for the surface code [44],
using a standard CPU, is approximately 440µs for a system of
5000 qubits, corresponding to 8.8 × 10−8s per qubit. (Note
that this latter figure is likely to be an overoptimistic estimate,
as this would imply that decoding the surface code could be
perfectly parallelised; on the other hand, algorithmic and im-
plementation optimisations to the algorithm of [44] could im-
prove its runtime.)

So one CPU could support around 2 qubits while still
achieving a surface code cycle time of 200ns. Assuming that
GPU/ASIC implementations of this decoding algorithm are
indeed possible with roughly similar performance enhance-
ments to the case of Bitcoin, we might hope that a GPU-
based system could support 100 times as many qubits at this
clock speed, and that an ASIC could support 106 times as
many qubits. (Increased clock speeds would require a corre-
sponding increase in classical performance.) In unpublished
work [50], it has been estimated that a CPU core and FPGA

8 We would like to thank Craig Gidney for suggesting this cost model.
9 See https://en.bitcoin.it/wiki/Mining_hardware_
comparison, for example. Note that one “hash” corresponds to two
SHA-256 hash function evaluations.

https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
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N Realistic Plausible Optimistic
1012 4.17× 107 4.30× 104 9.15× 10−1

1016 2.29× 1012 7.76× 108 2.23× 104

1020 3.10× 1016 3.07× 1013 3.28× 108

TABLE XII. Classical processing required to implement N Toffoli
gates under different regimes, based on extrapolation of runtimes re-
ported in [44]. Measured in processor-days (where type of processor
is CPU, GPU and ASIC respectively in realistic, plausible and op-
timistic regimes). Assumes that the speedup offered by GPUs and
ASICs over CPUs is a factor of 100 and 106 respectively.

could realistically perform error correction for around 100
physical qubits, which would be 1–2 orders of magnitude
faster than a CPU alone; so this is comparable to what we
here call a GPU.

An indication of the computational resources required to
implement different numbers N of Toffoli gates is shown in
Table XII (the figures would be similar for T gates). This table
is calculated based on the cost of implementing Toffoli facto-
ries alone. First, the number of qubits required for each Tof-
foli factory is estimated. Then the processing time required by
the decoder to support each Toffoli factory is determined by
multiplying the estimated time for decoding each qubit (based
on [44], scaled according to processor type) by the spacetime
cost of the Toffoli factory. Finally, this is multiplied by the
number of Toffoli gates to get an estimate of overall process-
ing cost.

This is clearly a very approximate calculation, yet may give
an indication of the effect of this classical overhead. (For ex-
ample, error-correction procedures may run more quickly if
there are fewer errors, and we have not considered this effect
here.) By comparing Tables VI and XII, one can see that under
all of the regimes, and even if ASICs are used, the complexity
of classical processing wipes out any significant advantage for
the quantum algorithms. One reason for this is that the Toffoli
counts of the algorithms are substantially higher than the T-
depths. This may motivate (especially in the Optimistic sce-
nario) the use of an alternative error-correction scheme with
lower overhead, albeit perhaps a worse threshold than the sur-
face code.

IX. CONCLUSIONS AND FURTHER WORK

For the first time, we have given a detailed analysis of
the complexity of quantum algorithms for graph colour-
ing and boolean satisfiability, including overheads for fault-
tolerance, and have shown that in some scenarios the algo-
rithm could substantially outperform leading classical com-
petitors in terms of runtime. However, when one takes into
account the cost of classical processing using current tech-
niques, the speedup disappears. Also, the space usage of the
algorithms is extremely high (sometimes over 1013 physical
qubits), although this could be reduced at the expense of a

longer runtime, by changing the algorithms to perform fewer
tasks in parallel. Simply allowing the algorithms to run for
longer will increase the size of the potential speedup too; for
example, allowing the backtracking algorithm for k-colouring
to run for c days would increase the speedup by a factor of
approximately c.

There are some theoretical improvements that could be
considered to improve the complexity of these algorithms.
Arunachalam and de Wolf have given a variant of Grover’s
algorithm which solves the unstructured search problem for
a unique marked element in a set of N elements using only
O(log(log∗N)) gates between each oracle query [9], where
log∗N is the number of times the binary logarithm function
must be applied to N to obtain a number that is at most 1. It
might be possible to use these ideas to accelerate the variant
of Grover’s algorithm that we used here. (Note that the depth
of the circuit between each oracle query in the variant of the
algorithm that we use is only of size O(log logN) already, so
the gain might be relatively minor.)

Some specific ways in which it might be possible to im-
prove the quantum backtracking algorithm are:

• The main component of the algorithm is a con-
trolled quantum walk operation (controlled-RBRA)
used within phase estimation. The use of controlled
gates throughout adds some overhead to the algorithm.
If it were possible to just run the quantum walk di-
rectly, rather than needing to apply phase estimation
to it, this would reduce the complexity (and could also
give a more efficient algorithm for finding a solution,
rather than detecting its existence). Preliminary calcu-
lations suggest that replacing controlled operations with
uncontrolled ones could reduce the runtime by up to
∼20%.

• An automated circuit optimisation tool, such as T-
par [7], could be used to reduce the complexity of
the quantum circuits developed, and to check correct-
ness. It is not obvious how large a reduction could be
achieved, given that some of the subroutines used (such
as integer addition) are already low-depth and highly
optimised.

• One could consider optimisations targeted at particular
classes of graphs (e.g. sparse graphs) or boolean formu-
lae, and could consider different heuristic functions h.

Using the quantum backtracking algorithm to actually find
a k-colouring when one exists, rather than simply determining
whether one exists, would increase its complexity. However,
careful use and optimisation of the techniques of [6, 60] could
minimise this overhead.

In this work, the backtracking algorithm has been aggres-
sively optimised for circuit depth. It is unclear how much fur-
ther this process can be continued. Given that the depth over-
head of the quantum circuit is within an order of magnitude of
the quantum circuit for SHA-256 [8], it seems plausible that
one or two further orders of magnitude improvement are the
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most that will be possible. However, it may be possible to
reduce the Toffoli-count of the algorithm, which is extremely
high at present. Also, even without considering the overhead
for fault-tolerance, the space usage of the algorithm in general
seems very large (� 105 logical qubits in the case of graph
colouring), although it is worth bearing in mind that the in-
put size itself is relatively high (e.g. to describe an arbitrary
graph on 150 vertices requires over 104 bits). A further issue
faced by the quantum backtracking algorithm is its inability
to retain state across different evaluations of oracle functions,
whereas this is available to the classical algorithm and can
make it more efficient.

Our results suggest that improved fault-tolerance tech-
niques will be required to make the algorithms presented here
truly practical. (See [52, 67] for some very recent develop-
ments in this direction.) In particular, if a significant quan-
tum speedup is to be realised, it seems to be essential to have
highly efficient decoding algorithms and/or specialised decod-
ing hardware. Although the numbers reported here are daunt-
ing, there is scope for improvement. A potentially hopeful
parallel is previous work on quantum algorithms for quan-
tum chemistry, where initially reported complexities were
high [95], but were rapidly improved by orders of magni-
tude (see [10] and references therein). This was achieved by
a careful analysis of optimisations to the specific algorithms
used, and numerical calculations to determine performance
of the algorithms in practice, beyond the theoretical worst-
case bounds. Each of these general strategies could be applied
here.

The analysis here could be extended by attempting to find
more realistic models for constraint satisfaction problems that
occur in practice, rather than the completely unstructured fam-
ilies considered here. However, these can be seen as repre-
senting the “core” of a challenging problem, so are perhaps
reasonable in themselves. A more detailed comparison could
also be made with other classical solvers, including the use of
special-purpose hardware [93].
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Input: gate error pg , number N of Toffoli gates in circuit, talgo
time of algorithm in units of surface code cycles;
Output: Q number of physical qubits used by factory.

1. ptol ← 1/(3N)

2. i← 1

3. di ← min{d ∈ N : 99d(100pg)
(d+1)/2 ≥ ptol}

4. Qi ← 44di(di − 1)

5. Ti ← 9di

6. ptol ←
√
ptol/28

7. While ptol < pg:

(a) i← i+ 1

(b) di ← min{d ∈ N : 250d(100pg)
(d+1)/2 ≥ ptol}

(c) Qi ← (8 ∗ 15i−2)100di(di − 1)

(d) Ti ← 10di

(e) ptol ← (ptol/36)
1/3

8. layers← i

9. S =
∑layers

j=1 QjTj

10. Return Q = NS/talgo.

Algorithm 20. Resource requirements for a Toffoli factory

Input: gate error pg , number N of T gates in circuit, talgo time
of algorithm in units of surface code cycles;
Output: Q number of physical qubits used by factory.

1. ptol ← 1/(3N)

2. i← 0

3. While ptol < pg:

(a) i← i+ 1

(b) di ← min{d ∈ N : 250d(100pg)
(d+1)/2 ≥ ptol}

(c) Qi ← 15i−1100di(di − 1)

(d) Ti ← 10di

(e) ptol ← (ptol/36)
1/3

4. layers← i

5. S =
∑layers

j=1 QjTj

6. Return Q = NS/talgo.

Algorithm 21. Resource requirements for a T state factory

Appendix A: Resource requirements for Toffoli state factories

Here we include, as Algorithms 20 and 21, algorithms for
computing the resource requirements for Toffoli and T state
factories, based on the analysis in [78] and presented similarly
to the T state factory algorithm in [3]. Some approximations
are made to present a simple algorithm, but in the limit pg ≤
10−3 these are extremely accurate.

We give a brief justification of these numbers for the Toffoli
factory; the justification for the T state factory is essentially
the same with a few steps removed. The variable ptol is ini-

https://doi.org/10.5523/bris.17mjvdv1u7udm2u9frlh61ltvp
https://doi.org/10.5523/bris.17mjvdv1u7udm2u9frlh61ltvp
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tially set to the target error probability per Toffoli magic state.
We aim for Nptol ≤ 1/3 so the total failure probability of the
algorithm is less than a third. We work backwards from the
last round of distillation to the first round, increasing ptol until
ptol > pg . Therefore we are assuming the initial magic states
must have an error probability of pg or less, which is justified
due to Ref. [66]. The index i starts at 1 for the last round of
distillation that uses the Toffoli protocol, and we increment i
as we go to lower rounds of distillation. A key concept here is
that of balanced investment [78]. That is, on the ith round of
distillation we use a surface code of distance di that suffices
to reduce Clifford gate noise below the target error probability
ptol.

In steps (3)-(5) we calculate the resource costs in the Tof-
foli routine [48, 61, 78]. The noise per logical Clifford gate
is suppressed to ∼ d(100pg)

(d+1)/2 and there are 99 possi-
ble locations for a logical gate error (this will become clear
below). Given the surface code distances, we can calculate
the quantity of physical qubits needed. Each Toffoli routine
uses 11 logical qubits when ancillae are included (see Fig. 9
of Ref. [78]). For each logical qubit we need 2di(di−1) phys-
ical qubits to realise the code and a further 2di(di − 1) qubits
for syndrome extraction. Therefore we require 44di(di − 1)
physical qubits as in step (4). The protocol is depth 9 in logical
gates, with each logical gate requiring di surface code cycles,
giving step (5). For a depth 9 circuit with 11 logical qubits,
the number of possible error locations is upper bounded by
the value 99 that we used earlier. The Toffoli routine takes T
magic states of error probability ε and outputs a Toffoli state
with error probability 27ε2 + O(ε3), which for ε < 10−3 is
strictly upper bounded by 28ε2. Inverting this relationship,
we obtain the ptol update in step 6. There is some finite fail-
ure probability but for pg ≤ 10−4 this will not affect the order
of magnitude of the calculation.

Next, we iterate through a suitable number of rounds of the
15 → 1 Bravyi-Kitaev protocol [26]. The noise per logical
Clifford gate is suppressed to ∼ di(100pg)

(di+1)/2 and there
are 250 possible locations for a logical gate error (this will be-

come clear below). Given the surface code distances, we can
calculate the quantity of physical qubits needed. We use 25
logical qubits for the 15→ 1 protocol (see Fig. 8 of Ref. [78]).
Therefore, (2 + 2) ∗ 25di(di − 1) = 100di(di − 1) physical
qubits are needed for each 15 → 1 protocol. On the distil-
lation round with index i, we need (8 ∗ 15i−2) copies of the
15 → 1 protocol. The product of these numbers gives Qi
in line 7(c). The 15 → 1 protocol can be executed in depth
10 logical gates each requiring di surface code cycles, giv-
ing a total Ti shown in step 7(d). Since there are 25 logical
qubits in a depth 10 circuit, this gives the 250 potential error
locations asserted earlier. We must update ptol. The 15 → 1
routine takes T magic states of error probability ε and out-
puts a T state with error probability 35ε3 + O(ε4), which for
ε < 10−3 is strictly upper bounded by 36ε3. Inverting this
relationship, we obtain the ptol update in step 7(e). Again, the
failure probabilities are negligible in the regimes considered
here.

Finally, we combine the physical qubit cost and time cost
into a single total space-time cost S per Toffoli state, shown in
step (9). To deliverN of these states within time talgo requires
a factory with a total number of qubits given by step (10). The
constant talgo must be input in units of surface code cycles.

We offer some remarks on possible additional savings.
There is potential to cut these numbers in half by using the
rotated surface code [59] but it is currently unknown whether
the error suppression still obeys ∼ d(100pg)

(d+1)/2 so we in-
stead opt for a conservative, well-supported estimate. There
are several additional protocols for T state distillation (includ-
ing Refs. [27, 33, 72]) but optimising over all these protocols
is much more involved and the above estimate will give a sim-
ilar order of magnitude result. It is known that Toffoli states
can be distilled using 6 T-states (asymptotically) rather than 8
T-states (see Refs. [31, 32]) but we do not know the ancilla or
time cost of implementing this protocol. It is often hoped that
significant savings could be made by circumventing the need
for magic state factories altogether, but the resource trade-offs
are subtle; see Ref. [34] for a review.
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