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Abstract

Quantum computers are designed to outperform standard computers by running quantum
algorithms. Areas in which quantum algorithms can be applied include cryptography, search
and optimisation, simulation of quantum systems, and solving large systems of linear equations.
Here we briefly survey some known quantum algorithms, with an emphasis on a broad overview
of their applications rather than their technical details. We include a discussion of recent
developments and near-term applications of quantum algorithms.

1 Introduction

A quantum computer is a machine designed to use quantum mechanics to do things which cannot be
done by any machine based only on the laws of classical physics. Eventual applications of quantum
computing range from breaking cryptographic systems to the design of new medicines. These
applications are based on quantum algorithms – algorithms which run on a quantum computer and
achieve a speedup, or other efficiency improvement, over any possible classical algorithm. Although
large-scale general-purpose quantum computers do not yet exist, the theory of quantum algorithms
has been an active area of study for over 20 years. Here we aim to give a broad overview of quantum
algorithmics, focusing on algorithms with clear applications and rigorous performance bounds, and
including recent progress in the field.

Contrary to a rather widespread popular belief that quantum computers have few applications,
the field of quantum algorithms has developed into an area of study large enough that a brief
survey such as this cannot hope to be remotely comprehensive. Indeed, at the time of writing the
“Quantum Algorithm Zoo” website cites 278 papers on quantum algorithms [52]. There are now
a number of excellent surveys about quantum algorithms [28, 71, 85, 8], and we defer to these for
details of the algorithms we cover here, and many more. In particular, we omit all discussion of how
the quantum algorithms mentioned work. We will also not cover the important topics of how to
actually build a quantum computer [59] (in theory or in practice) and quantum error-correction [42],
nor quantum communication complexity [23] or quantum Shannon theory [98].

1.1 Measuring quantum speedup

What does it mean to say that a quantum computer solves a problem more quickly than a classical
computer? As is typical in computational complexity theory, we will generally consider asymptotic
scaling of complexity measures such as runtime or space usage with problem size, rather than

∗School of Mathematics, University of Bristol, UK; ashley.montanaro@bristol.ac.uk.

1



Class Informal definition

P Can be solved by a deterministic classical computer in polynomial time
BPP Can be solved by a probabilistic classical computer in polynomial time
BQP Can be solved by a quantum computer in polynomial time
NP Solution can be checked by a deterministic classical computer in polynomial time
QMA Solution can be checked by a quantum computer in polynomial time

Table 1: Some computational complexity classes of importance in quantum computation. “Poly-
nomial time” is short for “in time polynomial in the input size”.

individual problems of a fixed size. In both the classical and quantum settings, we measure runtime
by the number of elementary operations used by an algorithm. In the case of quantum computation,
this can be measured using the quantum circuit model, where a quantum circuit is a sequence of
elementary quantum operations called quantum gates, each applied to a small number of qubits
(quantum bits). To compare the performance of algorithms, we use computer-science style notation
O(f(n)), which should be interpreted as “asymptotically upper-bounded by f(n)”.

We sometimes use basic ideas from computational complexity theory [73], and in particular
the notion of complexity classes, which are groupings of problems by difficulty. See Table 1 for
informal descriptions of some important complexity classes. If a problem is said to be complete
for a complexity class, this means that it is one of the “hardest” problems within that class: it is
contained within that class, and every other problem within that class reduces to it.

2 The hidden subgroup problem and applications to cryptography

One of the first applications of quantum computers discovered was Shor’s algorithm for integer
factorisation [89]. In the factorisation problem, given an integer N = p × q for some prime num-
bers p and q, our task is to determine p and q. The best classical algorithm known (the general
number field sieve) runs in time exp(O((logN)1/3(log logN)2/3)) [22]1, while Shor’s quantum al-
gorithm solves this problem substantially faster, in time O((logN)3). This result might appear
only of mathematical interest, were it not for the fact that the widely-used RSA public-key cryp-
tosystem [82] relies on the hardness of integer factorisation. Shor’s efficient factorisation algorithm
implies that this cryptosystem is insecure against attack by a large quantum computer.

As a more specific comparison than the above asymptotic runtimes, in 2010 Kleinjung et al. [57]
reported classical factorisation of a 768-bit number, using hundreds of modern computers over a
period of two years, with a total computational effort of ∼ 1020 operations. A detailed analysis of
one fault-tolerant quantum computing architecture [42], making reasonable assumptions about the
underlying hardware, suggests that a 2000-bit number could be factorised by a quantum computer
using ∼ 3× 1011 quantum gates, and approximately a billion qubits, running for just over a day at
a clock rate of 10MHz. This is clearly beyond current technology, but does not seem unrealistic as
a long-term goal.

Shor’s approach to integer factorisation is based on reducing the task to a special case of a
mathematical problem known as the hidden subgroup problem (HSP) [16, 19], then giving an
efficient quantum algorithm for this problem.

1In fact, this is a heuristic bound and this algorithm’s worst-case runtime has not been rigorously determined; the
best proven bound is somewhat higher.
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Problem Group Complexity Cryptosystem

Factorisation Z Polynomial [89] RSA
Discrete log Zp−1 × Zp−1 Polynomial [89] Diffie-Hellman, DSA, . . .
Elliptic curve discrete log Elliptic curve Polynomial [76] ECDH, ECDSA, . . .
Principal ideal R Polynomial [46] Buchmann-Williams
Shortest lattice vector Dihedral group Subexponential [58, 80] NTRU, Ajtai-Dwork, . . .
Graph isomorphism Symmetric group Exponential −

Table 2: Some problems which can be expressed as hidden subgroup problems (HSPs). The table
lists the time complexity of the best quantum algorithms known for the HSPs, and the cryptosys-
tems that are (or would be) broken by polynomial-time algorithms.

Hidden subgroup problem. Let G be a group and let X be a set. Given the ability
to evaluate a function f : G → X, where f is constant on the cosets of some unknown
subgroup H ≤ G, and distinct on each coset, identify H.

Shor’s algorithm solves the case G = Z. Efficient solutions to the HSP for other groups G turn
out to imply efficient algorithms to break other cryptosystems; we summarise some important cases
of the HSP and some of their corresponding cryptosystems in Table 2. Two particularly interesting
cases of the HSP for which polynomial-time quantum algorithms are not currently known are
the dihedral and symmetric groups. A polynomial-time quantum algorithm for the former case
would give an efficient algorithm for finding shortest vectors in lattices [79]; an efficient quantum
algorithm for the latter case would give an efficient test for isomorphism of graphs (equivalence
under relabelling of vertices).

3 Search and optimisation

One of the most basic problems in computer science is unstructured search. This problem can be
formalised as follows:

Unstructured search problem. Given the ability to evaluate a function f : {0, 1}n →
{0, 1}, find x such that f(x) = 1, if such an x exists; otherwise, output “not found”.

It is easy to see that any classical algorithm which solves the unstructured search problem with
certainty must evaluate f N = 2n times in the worst case. Even if we seek a randomised algorithm
which succeeds, say, with probability 1/2 in the worst case, the number of evaluations required is
of order N . However, remarkably, there is a quantum algorithm due to Grover [45] which solves
this problem using O(

√
N) evaluations of f in the worst case2. The algorithm is bounded-error;

that is, it fails with probability ε, for arbitrarily small (but fixed) ε > 0. Although f may have
some kind of internal structure, Grover’s algorithm does not use this at all; we say that f is used
as an oracle or black box in the algorithm.

Grover’s algorithm can immediately be applied to any problem in the complexity class NP. This
class encapsulates decision problems whose solutions can be checked efficiently, in the following

2Grover’s original algorithm solved the special case where the solution is unique; the extension to multiple solutions
came slightly later [18].
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Figure 1: An instance of the Circuit SAT problem. The answer should be “yes” as there exists an
input to the circuit such that the output is 1.

sense: There exists an efficient classical checking algorithm A such that, for any instance of the
problem where the answer should be “yes”, there is a certificate which can be input to A such that
A accepts the certificate. In other words, a certificate is a proof that the answer is “yes”, which
can be checked by A. On the other hand, for any instance where the answer should be “no”, there
should be no certificate that can make A accept it. The class NP encompasses many important
problems involving optimisation and constraint satisfaction.

Given a problem in NP that has a certificate of length m, by applying Grover’s algorithm to A
and searching over all possible certificates, we obtain an algorithm which uses timeO(2m/2 poly(m)),
rather than the O(2m poly(m)) used by classical exhaustive search over all certificates. This (nearly)
quadratic speedup is less dramatic than the super-polynomial speedup achieved by Shor’s algorithm,
but can still be rather substantial. Indeed, if the quantum computer runs at approximately the
same clock speed as the classical computer, this implies that problem instances of approximately
twice the size can be solved in a comparable amount of time.

As a prototypical example of this, consider the fundamental NP-complete circuit satisfiability
problem (Circuit SAT), which is illustrated in Figure 1. An instance of this problem is a description
of an electronic circuit comprising AND, OR and NOT gates which takes n bits as input and
produces 1 bit of output. The task is to determine whether there exists an input to the circuit
such that the output is 1. Algorithms for Circuit SAT can be used to solve a plethora of problems
related to electronic circuits; examples include design automation, circuit equivalence and model
checking [75]. The best classical algorithms known for Circuit SAT run in worst-case time of order 2n

for n input variables, i.e. not significantly faster than exhaustive search [99]. By applying Grover’s
algorithm to the function f(x) which evaluates the circuit on input x ∈ {0, 1}n, we immediately
obtain a runtime of O(2n/2 poly(n)), where the poly(n) comes from the time taken to evaluate the
circuit on a given input.

3.1 Amplitude amplification

Grover’s algorithm speeds up the näıve classical algorithm for unstructured search. Quantum
algorithms can also accelerate more complicated classical algorithms.

Heuristic search problem. Given the ability to execute a probabilistic “guessing”
algorithm A, and a “checking” function f , such that

Pr[A outputs w such that f(w) = 1] = ε,

output w such that f(w) = 1.
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One way to solve the heuristic search problem classically is simply to repeatedly run A and check
the output each time using f , which would result in an average of O(1/ε) evaluations of f . However,
a quantum algorithm due to Brassard et al. [20] can find w such that f(w) = 1 with only O(1/

√
ε)

uses of f , and failure probability arbitrarily close to 0, thus achieving a quadratic speedup. This
algorithm is known as amplitude amplification, by analogy with classical probability amplification.

The unstructured search problem discussed above fits into this framework, by simply taking A
to be the algorithm which outputs a uniformly random n-bit string. Further, if there are k inputs
w ∈ {0, 1}n such that f(w) = 1, then

Pr[A outputs w such that f(w) = 1] =
k

N
,

so we can find a w such that f(w) = 1 with O(
√
N/k) evaluations of f . However, we could imagine

A being a more complicated algorithm or heuristic targeted at a particular problem we would like
to solve. For example, one of the most efficient classical algorithms known for the fundamental
constraint satisfaction problem 3-SAT3 is randomised and runs in time O((4/3)n poly(n)) [86].
Amplitude amplification can be applied to this algorithm to obtain a quantum algorithm with
runtime O((4/3)n/2 poly(n)), illustrating that quantum computers can speed up non-trivial classical
algorithms for NP-complete problems.

An interesting future direction for quantum algorithms is finding accurate approximate solu-
tions to optimisation problems. Recent work of Farhi, Goldstone and Gutmann [37] gave the first
quantum algorithm for a combinatorial task (simultaneously satisfying many linear equations of
a certain form) which outperformed the best classical algorithm known in terms of accuracy; in
this case, measured by the fraction of equations satisfied. This inspired a more efficient classical
algorithm for the same problem [9], leaving the question open of whether quantum algorithms for
optimisation problems can substantially outperform the accuracy of their classical counterparts.

3.2 Applications of Grover’s algorithm and amplitude amplification

Grover’s algorithm and amplitude amplification are powerful subroutines which can be used as
part of more complicated quantum algorithms, allowing quantum speedups to be obtained for
many other problems. We list just a few of these speedups here.

1. Finding the minimum of an unsorted list of N integers (equivalently, finding the minimum
of an arbitrary and initially unknown function f : {0, 1}n → Z). A quantum algorithm due
to Dürr and Høyer [35] solves this problem with O(

√
N) evaluations of f , giving a quadratic

speedup over classical algorithms. Their algorithm is based on applying Grover’s algorithm to
a function g : {0, 1}n → {0, 1} defined by g(x) = 1 if and only if f(x) < T for some threshold
T . This threshold is initially random, and then updated as inputs x are found such that f(x)
is below the threshold.

2. Determining graph connectivity. To determine whether a graph on N vertices is connected
requires time of order N2 classically in the worst case. Dürr et al. [34] give a quantum
algorithm which solves this problem in time O(N3/2), up to logarithmic factors, as well as
efficient algorithms for some other graph-theoretic problems (strong connectivity, minimum
spanning tree, shortest paths).

3The input is a boolean formula on n variables written in conjunctive normal form with at most 3 variables per
clause; our task is to determine whether the formula is satisfiable. For example, on input (x1 ∨¬x2 ∨x3)∧ (x2 ∨¬x1)
we should output “yes”, as witnessed by x1 = 0, x2 = 1, x3 = 1.
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3. Pattern matching, a fundamental problem in text processing and bioinformatics. Here the
task is to find a given pattern P of length M within a text T of length N , where the pattern
and the text are strings over some alphabet. Ramesh and Vinay have given a quantum
algorithm [78] which solves this problem in time O(

√
N +

√
M), up to logarithmic factors,

as compared with the best possible classical complexity O(N + M). These are both worst-
case time bounds, but one could also consider an average-case setting where the text and
pattern are both picked at random. Here the quantum speedup is more pronounced: there is
a quantum algorithm which combines amplitude amplification with ideas from the dihedral
hidden subgroup problem and runs in time O(

√
N/M2O(

√
logM)) up to logarithmic factors,

as compared with the best possible classical runtime O(N/M +
√
N) [70]. This is a super-

polynomial speedup when M is large.

3.3 Adiabatic optimisation

An alternative approach to quantum combinatorial optimisation is provided by the quantum adia-
batic algorithm [40]. The adiabatic algorithm can be applied to any constraint satisfaction problem
(CSP) where we are given a sequence of constraints applied to some input bits, and are asked to
output an assignment to the input bits which maximises the number of satisfied constraints. Many
such problems are NP-complete and of significant practical interest. The basic idea behind the
algorithm is physically motivated, and based around a correspondence between CSPs and physical
systems. We start with a quantum state which is the uniform superposition over all possible solu-
tions to the CSP. This is the ground (lowest energy) state of a Hamiltonian which can be prepared
easily. This Hamiltonian is then gradually modified to give a new Hamiltonian whose ground state
encodes the solution maximising the number of satisfied constraints. The quantum adiabatic the-
orem guarantees that, if this process is carried out slowly enough, the system will remain in its
ground state throughout; in particular, the final state gives an optimal solution to the CSP. The
key phrase here is “slowly enough”; for some instances of CSPs on n bits, the time required for this
evolution might be exponential in n.

Unlike the algorithms described in the rest of this survey, the adiabatic algorithm lacks gen-
eral, rigorous worst-case upper bounds on its runtime. Although numerical experiments can be
carried out to evaluate its performance on small instances [38], this rapidly becomes infeasible for
larger problems. One can construct problem instances on which the standard adiabatic algorithm
provably takes exponential time [94, 39]; however, changing the algorithm can evade some of these
arguments [36, 29].

The adiabatic algorithm can be implemented on a universal quantum computer. However, it
also lends itself to direct implementation on a physical system whose Hamiltonian can be varied
smoothly between the desired initial and final Hamiltonians. The most prominent exponent of
this approach is the company D-Wave Systems, Inc., which has built large machines designed to
implement this algorithm [51], with the most recent such machine (“D-Wave 2X”) announced as
having up to 1152 qubits. For certain instances of CSPs, these machines have been demonstrated
to outperform classical solvers running on a standard computer [69, 55], although the speedup
(or otherwise) seems to have a rather subtle dependence on the problem instance, classical solver
compared, and measure of comparison [83, 55].

As well as the theoretical challenges to the adiabatic algorithm mentioned above, there are also
some significant practical challenges faced by the D-Wave system. In particular, these machines do
not remain in their ground state throughout, but are in a thermal state above absolute zero. Because
of this, the algorithm actually performed has some similarities to classical simulated annealing, and
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is hence known as “quantum annealing”. It is unclear at present whether a quantum speedup
predicted for the adiabatic algorithm would persist in this setting.

4 Quantum simulation

In the early days of classical computing, one of the main applications of computer technology was
the simulation of physical systems4. Similarly, the most important early application of quantum
computers is likely to be the simulation of quantum systems [24, 21, 44]. Applications of quantum
simulation include quantum chemistry, superconductivity, metamaterials and high-energy physics.
Indeed, one might expect that quantum simulation would help us understand any system where
quantum mechanics plays a role.

The word “simulation” can be used to describe a number of problems, but in quantum compu-
tation is often used to mean the problem of calculating the dynamical properties of a system. This
can be stated more specifically as: Given a Hamiltonian H describing a physical system, and a
description of an initial state |ψ〉 of that system, output some property of the state |ψt〉 = e−iHt|ψ〉
corresponding to evolving the system according to that Hamiltonian for time t. As all quantum
systems obey the Schrödinger equation, this is a fundamentally important task; however, the ex-
ponential complexity of completely describing general quantum states suggests that it should be
impossible to achieve efficiently classically, and indeed no efficient general classical algorithm for
quantum simulation is known. This problem originally motivated Feynman to ask whether a quan-
tum computer could efficiently simulate quantum mechanics [41].

A general-purpose quantum computer can indeed efficiently simulate quantum mechanics in
this sense for many physically realistic cases, such as systems with locality restrictions on their
interactions [64]. Given a description of a quantum state |ψ〉, a description of H, and a time t,
the quantum simulation algorithm produces an approximation to the state |ψt〉. Measurements
can then be performed on this state to determine quantities of interest about it. The algorithm
runs in time polynomial in the size of the system being simulated (the number of qubits) and the
desired evolution time, giving an exponential speedup over the best general classical algorithms
known. However, there is still room for improvement and quantum simulation remains a topic of
active research. Examples include work on increasing the accuracy of quantum simulation while
retaining a fast runtime [14]; optimising the algorithm for particular applications such as quantum
chemistry [48]; and exploring applications to new areas such as quantum field theory [53].

The above, very general, approach is sometimes termed digital quantum simulation: we assume
we have a large-scale, general-purpose quantum computer, and run the quantum simulation algo-
rithm on it. By contrast, in analogue quantum simulation we mimic one physical system directly
using another. That is, if we would like to simulate a system with some Hamiltonian H, we build
another system which can be described by a Hamiltonian approximating H. We have gained some-
thing by doing this if the second system is easier to build, to run or to extract information from
than the first. For certain systems analogue quantum simulation may be significantly easier to
implement than digital quantum simulation, at the expense of being less flexible. It is therefore
expected that analogue simulators outperforming their classical counterparts will be implemented
first [24].

4Such applications arguably go back at least as far as the Antikythera mechanism from the 2nd century BC.
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Figure 2: Three graphs for whose natural generalisations to N vertices a classical random walk
requires exponentially more time than a quantum walk to reach the exit (B) from the entrance (A).
However, on the first two graphs there exist efficient classical algorithms to find the exit which are
not based on a random walk.

5 Quantum walks

In classical computer science the concept of the random walk or Markov chain is a powerful al-
gorithmic tool, and is often applied to search and sampling problems. Quantum walks provide a
similarly powerful and general framework for designing fast quantum algorithms. Just as a random
walk algorithm is based on the simulated motion of a particle moving randomly within some un-
derlying graph structure, a quantum walk is based on the simulated coherent quantum evolution
of a particle moving on a graph.

Quantum walk algorithms generally take advantage of one of two ways in which quantum walks
outperform random walks: faster hitting (the time taken to find a target vertex from a source
vertex), and faster mixing (the time taken to spread out over all vertices after starting from one
source vertex). For some graphs, hitting time of quantum walks can be exponentially less than
their classical counterparts [27, 54]. The separation between quantum and classical mixing time
can be quadratic, but no more than this [3] (approximately). Nevertheless, fast mixing has proven
to be a very useful tool for obtaining general speedups over classical algorithms.

Figure 2 illustrates special cases of three families of graphs for which quantum walks display
faster hitting than random walks: the hypercube, the “glued trees” graph, and the “glued trees”
graph with a random cycle added in the middle. This third example is of particular interest because
quantum walks can be shown to outperform any classical algorithm for navigating the graph, even
one not based on a random walk. A continuous-time quantum walk which starts at the entrance
(on the left-hand side) and runs for time O(logN) finds the exit (on the right-hand side) with
probability at least 1/ poly(logN). However, any classical algorithm requires time of order N1/6

to find the exit [26]. Intuitively, the classical algorithm can progress quickly at first, but then
gets “stuck” in the random part in the middle of the graph. The coherence and symmetry of the
quantum walk make it essentially blind to this randomness, and it efficiently progresses from the
left to the right.

A possibly surprising application of quantum walks is fast evaluation of boolean formulae. A
boolean formula on N binary inputs x1, . . . , xN is a tree whose internal vertices represent AND (∧),
OR (∨) or NOT (¬) gates applied to their child vertices, and whose N leaves are labelled with the
bits x1, . . . , xN . Two such formulae are illustrated in Figure 3. There is a quantum algorithm which
allows any such formula to be evaluated in slightly more than O(N1/2) operations [5], while it is

8



x1 x2 x3 x4

¬∧

∨

∧

x1 x2 x3 x4

∨ ∨

∧

Figure 3: Two boolean formulae on 4 bits. For x1 = 1, x2 = x3 = x4 = 0, for example, the first
formula evaluates to 1 and the second to 0. The second formula is an AND-OR tree.

known that for a wide class of boolean formulae, any randomised classical algorithm requires time of
order N0.753... in the worst case [84]. The quantum algorithm is based around the use and analysis
of a quantum walk on the tree graph corresponding to the formula’s structure. A particularly
interesting special case of the formula evaluation problem which displays a quantum speedup is
evaluating AND-OR trees, which corresponds to deciding the winner of certain two-player games.

Quantum walks can also be used to obtain a very general speedup over classical algorithms based
on Markov chains. A discrete-time Markov chain is a stochastic linear map defined in terms of its
transition matrix P , where Pxy is the probability of transitioning from state x to state y. Many
classical search algorithms can be expressed as simulating a Markov chain for a certain number of
steps, and checking whether a transition is made to a “marked” element for which we are searching.
A key parameter which determines the efficiency of this classical algorithm is the spectral gap δ of
the Markov chain (i.e. the difference between the largest and second-largest eigenvalues of P ).

There are analogous algorithms based on quantum walks which improve the dependence on δ
quadratically, from 1/δ to 1/

√
δ [6, 92, 66]. This framework has been used to obtain quantum

speedups for a variety of problems [85], ranging from determining whether a list of integers are all
distinct [6] to finding triangles in graphs [61].

6 Solving linear equations and related tasks

A fundamental task in mathematics, engineering and many areas of science is solving systems of
linear equations. We are given an N ×N matrix A, and a vector b ∈ RN , and are asked to output
x such that Ax = b. This problem can be solved in time polynomial in N by straightfoward linear-
algebra methods such as Gaussian elimination. Can we do better than this? This appears difficult,
because even to write down the answer x would require time of order N . The quantum algorithm of
Harrow, Hassidim and Lloyd [47] (HHL) for solving systems of linear equations sidesteps this issue
by “solving” the equations in a peculiarly quantum sense: Given the ability to create the quantum
state |b〉 =

∑N
i=1 bi|i〉, and access to A, the algorithm outputs a state approximately proportional

to |x〉 =
∑N

i=1 xi|i〉. This is an N -dimensional quantum state which can be stored in O(logN)
qubits.

The algorithm runs efficiently, assuming that the matrix A satisfies some constraints. First,
it should be sparse – each row should contain at most d elements, for some d � N . We should
be given access to A via an function to which we can pass a row number r and an index i, with
1 ≤ i ≤ d, and which returns the i’th nonzero element in the r’th row. Also, the condition number
κ = ‖A−1‖‖A‖, a parameter measuring the numerical instability of A, should be small. Assuming
these constraints, |x〉 can be approximately produced in time polynomial in logN , d, and κ [47, 4].
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If d and κ are small, this is an exponential improvement on standard classical algorithms. Indeed,
one can even show that achieving a similar runtime classically would imply that classical computers
could efficiently simulate any polynomial-time quantum computation [47].

Of course, rather than giving as output the entirety of x, the algorithm produces an N -
dimensional quantum state |x〉; to output the solution x itself would then involve making many
measurements to completely characterise the state, requiring time of order N in general. However,
we may not be interested in the entirety of the solution, but rather in some global property of it.
Such properties can be determined by performing measurements on |x〉. For example, the HHL
algorithm allows one to efficiently determine whether two sets of linear equations have the same
solution [4], as well as many other simple global properties [30].

The HHL algorithm is likely to find applications in settings where the matrix A and the vector
b are generated algorithmically, rather than being written down explicitly. One such setting is
the finite element method (FEM) in engineering. Recent work by Clader, Jacobs and Sprouse has
shown that the HHL algorithm, when combined with a preconditioner, can be used to solve an
electromagnetic scattering problem via the FEM [30]. The same algorithm, or closely related ideas,
can also be applied to problems beyond linear equations themselves. These include solving large
systems of differential equations [62, 13], data fitting [97] and various tasks in machine learning [65].
It should be stressed that in all these cases the quantum algorithm “solves” these problems in the
same sense as the HHL algorithm solves them: it starts with a quantum state and produces a
quantum state as output. Whether this is a reasonable definition of “solution” depends on the
application, and again may depend on whether the input is produced algorithmically or is provided
explicitly as arbitrary data [1].

7 Few-qubit applications and experimental implementations

Although progress in experimental quantum computation has been rapid, there is still some way to
go before we have a large-scale, general-purpose quantum computer, with current implementations
consisting of only a few qubits. Any quantum computation operating on at most 20-30 qubits
in the standard quantum circuit model can be readily simulated on a modern classical computer.
Therefore, existing implementations of quantum algorithms should usually be seen as proofs of
principle rather than demonstrating genuine speedups over the classical state-of-the-art. In Table 3
we highlight some experimental implementations of algorithms discussed here, focusing on the
largest problem sizes considered thus far5.

An important algorithm omitted from this table is quantum simulation. This topic has been
studied since the early days of quantum computation (with perhaps the first implementation dating
from 1999 [91]), and quantum simulations have now been implemented, in some form, on essentially
every technological platform for quantum computing. One salient example is the use of a 6-qubit ion
trap system [60] to implement general digital quantum simulation; we defer to survey papers [24,
44, 15, 7] for many further references. It is arguable that quantum simulations, in the sense of
measuring the properties of a controllable quantum system, have already been performed which are
beyond the reach of current classical simulation techniques [93].

One application of digital quantum simulation which is currently the object of intensive study
is quantum chemistry [48, 74, 96]. Classical techniques for molecular simulation are currently
limited to molecules with 50-70 spin orbitals [74]. As each spin orbital corresponds to a qubit in

5Although note that one has to be careful when using “problem size” as a proxy for “difficulty in solving on a
quantum computer” [90].
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Algorithm Technology Problem solved

Shor’s algorithm Bulk optics [68] Factorisation of 21
Grover’s algorithm NMR [95] Unstructured search, N = 8
Quantum annealing D-Wave 2X [55] Ising model on a “Chimera” graph

with 1097 vertices
HHL algorithm Bulk optics [25, 10], NMR [72] 2× 2 system of linear equations

Table 3: Some proof-of-concept experimental implementations of quantum algorithms. Table only
includes some “largest” problem instances solved thus far.

the quantum simulation algorithm, a quantum computer with as few as 100 logical qubits could
perform calculations beyond the reach of classical computation. The challenge in this context is
optimising the simulation time; although polynomial in the number of orbitals, this initially seemed
prohibitively long [96], but was rapidly improved via detailed analysis [74].

The demonstration of quantum algorithms which outperform classical computation in the more
immediate future is naturally of considerable interest. The Boson Sampling problem was designed
specifically to address this [2]. Boson Sampling is the problem of sampling from the probability
distribution obtained by feeding n photons through a linear-optical network on m modes, where
m � n. This task is conjectured to be hard for a classical computer to solve [2]. However, Boson
Sampling can be performed easily using linear optics, and indeed several small-scale experimental
demonstrations with a few photons have already been carried out [77]. Although Boson Sampling
was not originally designed with practical applications in mind, subsequent work has explored
connections to molecular vibrations and vibronic spectra [50, 67].

One way in which quantum algorithms can be profitably applied for even very small-scale
systems is “quantum algorithmic thinking”: applying ideas from the design of quantum algorithms
to physical problems. An example of this from the field of quantum metrology is the development of
high-precision quantum measurement schemes based on quantum phase estimation algorithms [49].

8 Zero-qubit applications

We finally mention some ways in which quantum computing is useful now, without the need for an
actual large-scale quantum computer. These can be summarised as the application of ideas from
the theory of quantum computation to other scientific and mathematical fields.

First, the field of Hamiltonian complexity aims to characterise the complexity of computing
quantities of interest about quantum-mechanical systems. A prototypical example, and a funda-
mental task in quantum chemistry and condensed-matter physics, is the problem of approximately
calculating the ground-state energy of a physical system described by a local Hamiltonian. It is
now known that this problem – along with many others – is QMA-complete [56, 17]. Problems in
the class QMA are those which can be efficiently solved by a quantum computer given access to
a quantum “certificate”6. Classically, if a problem is proven NP-complete, this is considered good
evidence that there is no efficient algorithm to solve it. Similarly, QMA-complete problems are
considered unlikely to have efficient quantum (or classical) algorithms. One can even go further
than this, and attempt to characterise for which families of physical systems calculating ground-

6We imagine that the certificate is produced by an all-powerful (yet untrustworthy) wizard Merlin, and given to
a polynomial-time human Arthur to check; hence Quantum Merlin-Arthur.
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state energies is hard, and for which the problem is easy [87, 70]. Although this programme is
not yet complete, it has already provided some formal justification for empirical observations in
condensed-matter physics about relative hardness of these problems.

Second, using the model of quantum information as a mathematical tool can provide insight
into other problems of a purely classical nature. For example, a strong lower bound on the clas-
sical communication complexity of the inner product function can be obtained based on quantum
information-theoretic principles [31]. Ideas from quantum computing have also been used to prove
new limitations on classical data structures, codes and formulae [33].

9 Outlook

We have described a rather large number of quantum algorithms, solving a rather large number of
problems. However, one might still ask why more algorithms are not known – and in particular,
more exponential speedups?

One reason is that strong lower bounds have been proven on the power of quantum computation
in the query complexity model, where one considers only the number of queries to the input as
the measure of complexity. For example, the complexity achieved by Grover’s algorithm cannot be
improved by even one query while maintaining the same success probability [100]. More generally,
in order to achieve an exponential speedup over classical computation in the query complexity
model there has to be a promise on the input, i.e. some possible inputs must be disallowed [11].
This is one reason behind the success of quantum algorithms in cryptography: the existence of
hidden problem structure which quantum computers can exploit in ways that classical computers
cannot. Finding such hidden structure in other problems of practical interest remains an important
open problem.

In addition, a cynical reader might point out that known quantum algorithms are mostly based
on a rather small number of quantum primitives (such as the quantum Fourier transform and
quantum walks). An observation attributed to van Dam7 provides some justification for this. It is
known that any quantum circuit can be approximated using only Toffoli and Hadamard quantum
gates [88]. The first of these is a purely classical gate, and the second is equivalent to the Fourier
transform over the group Z2. Thus any quantum algorithm whatsoever can be expressed as the
use of quantum Fourier transforms interspersed with classical processing! However, the intuition
behind the quantum algorithms described above is much more varied than this observation would
suggest. The inspiration for other quantum algorithms, not discussed here, includes topological
quantum field theory [43]; connections between quantum circuits and spin models [32]; the Elitzur-
Vaidman quantum bomb tester [63]; and directly solving the semidefinite programming problem
characterising quantum query complexity [81, 12].

As well as the development of new quantum algorithms, an important direction for future
research seems to be the application of known quantum algorithms (and algorithmic primitives)
to new problem areas. This is likely to require significant input from, and communication with,
practitioners in other fields.

7See http://dabacon.org/pontiff/?p=1291.

12

http://dabacon.org/pontiff/?p=1291


Acknowledgements

This work was supported by the UK EPSRC under Early Career Fellowship EP/L021005/1. Thanks
to many people including Patrick Birchall, Steve Brierley, Aram Harrow and Tom Wong for com-
ments which improved previous versions of the paper.

References

[1] S. Aaronson. Quantum machine learning algo-
rithms: Read the fine print. Nature Physics,
11:291–293, 2015.

[2] S. Aaronson and A. Arkhipov. The
computational complexity of linear optics.
Theory of Computing, 9(4):143–252, 2013.
arXiv:1011.3245.

[3] D. Aharonov, A. Ambainis, J. Kempe, and
U. Vazirani. Quantum walks on graphs. In
Proc. 33rd Annual ACM Symp. Theory of Com-
puting, pages 50–59, 2001. quant-ph/0012090.

[4] A. Ambainis. Variable time amplitude am-
plification and a faster quantum algorithm
for solving systems of linear equations. In
Proc. 29th Annual Symp. Theoretical Aspects
of Computer Science, pages 636–647, 2012.
arXiv:1010.4458.

[5] A. Ambainis, A. Childs, B. Reichardt,
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