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We prove a general lower bound on the bounded-error entanglement-assisted quantum communi-
cation complexity of Boolean functions. The bound is based on the concept that any classical or
quantum protocol to evaluate a function on distributed inputs can be turned into a quantum com-
munication protocol. As an application of this bound, we give a very simple proof of the statement
that almost all Boolean functions on n + n bits have linear communication complexity, even in the
presence of unlimited entanglement.

I. INTRODUCTION

Consider a total Boolean function f : {0,1}" x {0,1}" — {0,1}. The quantum communication
complezity of f is defined to be the minimum number of qubits required to be transmitted between
two parties (Alice and Bob) for them to compute f(x,y) for any two n-bit inputs z, y, given that
Alice starts out with  and Bob with y. This number is clearly upper bounded by n, but for some
functions may be considerably lower. Alice and Bob may be allowed some probability of error €, and
may be allowed to share an entangled state before they start their protocol. We will assume that
Bob has to output the result. (See [25] and [17] for excellent introductions to quantum and classical
communication complexity, respectively.)

Some functions are known to have a quantum communication complexity lower than their classi-
cal communication complexity (for example, a bounded-error protocol for the disjointness function
f(z,y) =1 < |z Ay| = 0 requires (n) bits of classical communication, but only ©(y/n) qubits of
quantum communication [l 23]), but it is still open whether the quantum communication complex-
ity of total functions can ever be exponentially smaller than the classical communication complexity.
It is therefore of interest to produce lower bounds on quantum communication complexity. In this
context, the model with prior entanglement is less well understood; although there are strong bounds
known for some classes of functions |5, 23], there are few general lower bounds [4]. It has been shown
[9, [10] that sharing entanglement may significantly reduce the communication cost of computing a
partial function (where there is a promise on the input), but it is unknown whether a similar result
may hold for total functions.

In this paper, we develop an elegant result of Cleve et al. that relates computation to communica-
tion. Cleve et al. showed [d] that, if Alice and Bob have access to a protocol to exactly compute the
inner product function IP(z,y) = >, z;y; (mod 2), then this can be used to produce a quantum
protocol that communicates Alice’s input x to Bob. They used this to show that [P cannot be
computed (exactly and without prior entanglement) by sending fewer than n bits from Alice to Bob.
Similar results hold for the bounded-error case and with prior entanglement.
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We show that a weaker form of this result can be extended to all Boolean functions. The exten-
sion leads to the development of a new complexity measure for Boolean functions: communication
capacity. Given a Boolean function f(z,y), we define the communication capacity of f as the max-
imum number of bits which the execution of a protocol to compute f allows Alice to communicate
to Bob (in an asymptotic sense). This is a concept which has no classical analogue, and which can
be shown to give a lower bound on the quantum communication complexity of f (with or without
entanglement).

The lower bound we obtain turns out to be a generalisation of a bound obtained by Klauck
I15] on quantum communication complexity in the model without entanglement. The result here
can thus be seen as extending Klauck’s bound to the model of entanglement-assisted quantum
communication, and giving it a satisfying operational interpretation. As our bound also holds for
classical communication complexity, it fits into the framework of results using ideas from quantum
information to say something about classical computation.

We will use the standard notation Qg(f) to denote the quantum communication complexity of
f in the case where the protocol must be exact, Q.(f) the complexity where Alice and Bob are
allowed to err with probability € < 1/2, and Q2(f) the complexity in the case where e = 1/3. In all
three cases, Alice and Bob’s initial state is separable; Q% (f), QX (f) and Q3(f) will represent the
equivalent quantities in the case where they are allowed to share an arbitrary initial entangled state.

As is usual in computational complexity, we would expect most functions to have “high” quantum
communication complexity. Kremer showed [16] by a counting argument that a random function
f has Q2(f) > n/2 (and thus Qg(f) > n/2). Buhrman and de Wolf extended Kremer’s methods
to show that, for all f, Q5(f) > (logrank(f))/2 4] (an equivalent result is shown in section 6.4.2
of [2(]). As almost all Boolean matrices have full rank, this shows that for almost all f, Q% (f) >
n/2. Very recently, Gavinsky, Kempe and de Wolf [8] have shown the final remaining case: for
almost all f, @5(f) = Q(n). Their technique was to relate quantum communication protocols to
quantum fingerprinting protocols, and then to show a relationship between quantum fingerprinting
and some well-studied concepts from classical computational learning theory. This result was shown
independently by Linial and Shraibman [1§]; their paper also extends the well-known discrepancy
lower bound to the model of quantum communication with entanglement.

As an application of our communication capacity technique, we reprove the result that for almost
all f, Q3(f) = Q(n). The proof is of a quite different character and of (arguably) a more “quantum”
nature, as it is based on showing that the entropy of almost all density matrices produced in a
certain random way is high.

A. Notation

We will use M to denote the square communication matrix of f (where M,, is equal to (—1)7 (@),
H (v) will denote the Shannon entropy of a vector v, and S(p) the von Neumann entropy of a density
matrix p (S(p) = —tr(plogp)). All logarithms will be taken to base 2.

II. TURNING ANY DISTRIBUTED FUNCTION INTO A COMMUNICATION
PROTOCOL

In this section, we will describe a protocol (which is a simple extension of the protocol in [4] for
IP) that allows any protocol for evaluating a distributed function to be turned into a communication
protocol. However, for some functions, the communication will be considerably more inefficient than
IP allows (Alice may only be able to send < n bits to Bob).



A. Exact protocols

Say Alice and Bob have access to a classical or quantum protocol that computes f(z,y) exactly.
We express this as a unitary P that performs the following action.

Plz)aly)sl0)Bla)as = |7)aly)Blf(2,y))la) aB (1)

where |a), |a’) are arbitrary (and possibly entangled) ancilla states shared by Alice and Bob. Note
that, as P does not modify the first two registers, we may decompose it as follows:

P = le zla @ [y)(ylp © Usy (2)

for some unitary U, acting only on the last two registers. Following [5], we will turn this into a
“clean” protocol P’ by giving Bob an additional qubit to copy the answer into, then running the
protocol backwards to uncompute the “junk” |a’). The steps of the clean protocol are thus

i) [2)aly)l0)Bl0)Bla)an

(i) — |z)aly)slf(2,9))5l0)5ld")an

(i) — |z)aly)slf(x,9)5lf(2,y))5la") aB
(iv) — [2)aly)Bl0)B|f(2,9))Bla)ar

where now the fourth register contains the answer. Ignoring the third and fifth registers, which are
the same at the beginning and the end of the protocol, we are left with the map

P'lz)aly)Bl0)s = |z)aly) Bl f (2, 9)) 5 3)

Note that, if the original protocol P communicated a qubits from Alice to Bob and b qubits from
Bob to Alice, the protocol P’ requires a+ b qubits to be communicated in each direction. That is, P’
sends as many qubits in the “forward” direction as the original protocol P sends in total. Now say
Alice wants to communicate her input = to Bob using this protocol. They start with the following
state, where (b,) is an arbitrary probability distribution on Bob’s inputs:

W =lma | 3 Vs %<|o>—|1>>3 (4)

ye{0,1}n

Note that this state is separable (so we do not require entanglement to execute the communication
protocol). After executing the clean protocol for f, they are left with

Plly) = \/— Yo Ve (f(@y) = 1= f@,9)p (5)

ye{0,1}"

a3 DI o) p %<|o>—|1>>3 (6)

ye{0,1}"

Ignoring the registers that remain the same throughout, Bob has the following state at the end of
the protocol.

o) = D (CDIED V) (7)

ye{0,1}"



This state provides some information about Alice’s bit string x. If (¥;|t,/) = 0 for all 2’ # = (as
is the case with the protocol of [4] for IP, where Bob uses the uniform distribution on his inputs)
then Bob can determine x with certainty and hence has received n bits from Alice. If this is not the
case, then we can still quantify precisely how much information can be transmitted. The protocol
is equivalent to Alice encoding the classical bit-string x as a state [1),), and co-operating with Bob
to send it to him. Say Alice uses a distribution (a,) on her inputs. Then the ensemble representing
what Bob eventually receives is

p= Z x| Yz) (Va| (8)

ze{0,1}"

By Holevo’s theorem [12], the entropy S(p) describes the maximum number of bits of classical in-
formation about z available to Bob by measuring p. And, by the Holevo-Schumacher-Westmoreland
channel coding theorem for a channel with pure signal states [L1], Alice and Bob can achieve this
bound (in an asymptotic sense) using block coding!

Therefore, the ability to compute f exactly can be used to transmit S(p) bits of information
through a quantum channel, even though this does not hold if Alice and Bob are restricted to
a classical channel. We thus define the communication capacity of a Boolean function f as the
maximum over all probability distributions (a;) (on Alice’s inputs) and (b,) (on Bob’s inputs) of

S| Do awla)(@ul | L where Jyo) = D (=17 /by ly) 9)

z€{0,1}" ye{0,1}m

B. Bounded error protocols

In the case where Alice and Bob have access to a protocol computing f with some probability of
error, Bob will not have the state [¢,) at the end of the protocol, but rather some approximation
[e). We will now show that, if the error probability is small, this is in fact still sufficient to
communicate a significant amount of information from Alice to Bob. As before, Alice will use a
distribution (a;) on her inputs, and Bob a distribution (b,).

Say Alice and Bob are using a protocol P¢ that computes f with probability of error e, where
€ < 1/2. As before, the |z) and |y) registers will be unchanged by this protocol, so we can write

P =" |a)ala @ ly)yls @ Ug, (10)

z,Y

Now let us run the protocol on the same starting state |¢)) as in the previous section.

i) fz)a % Y Volysl0)s(0) — 11)5 | la)as

ye{0,1}n

(i) — [z)a % Y Vouly)(awyl0) + By [1)5(0) = [1)5 | la)as

ye{0,1}n

where the effect of Uy, on the “answer” qubit has been decomposed into oy and B, components.
If f(z,y) =0, then |azy|?> > 1 — ¢, and thus (by unitarity) |B3.y|? < € if f(2,y) =1, |Beyl? > 1 — €
and |ag,|? < e. The ancilla register is still completely arbitrary, and in particular may be entangled
with any of the other registers. Continuing the protocol, we have



(ifi) — [)a 7 Z VOuly) B (acy|0)]0) — azy|0)[1) = Bay[1)|0) + Boy[1)[1))E | la')ar (1)

O }n

(iv) — [a) 4 f Z VO ly) By (@, 0) + 5, [1)]0) — g (@, |0) + 72, 11)[1)
{1y (12)

= Bay (B2 10) + 02, [1))[0) + By (B2 10) + 5§2yll>)ll>)3> |a)as

= |z)a > Vyl9) B(ay sy = BayB2,)|0) + (Qayiy — BaySs,) 1) 5(10) = (1)) |la)an
\/_ ye{0,1}
(13)

where we introduce 73, and 4y, as arbitrary elements of (Ugy)lf, subject only to the constraint that
U, be unitary. We may now remove registers that end the protocol unchanged and rewrite Bob’s
final state as

Y V) ((awyl? = 1Bey*)I0) + (Qwyvs, — Baybs,) 1)) (14)
ye{0,1}7
Now, if f(z,y) = 0, then |auy|® — |Bey|*> > 1 — 2¢ > 0, whereas if f(z,y) = 1, |auy|> — |Beyl* <
2¢ —1 < 0. We may therefore write
le) = Z by ly) ( 1)@ cos 6,,,]0) + e'¥=v s1n9my|1>) (15)
ye{0,1}n

where 6, is real with cosf;, > 1 — 2¢, and ¢, is an arbitrary phase. Crucially, the form of these
states is quite restricted and close to the original |4, ). In fact, it is clear that

| (el (ODIE) P > (1 = 2¢) (16)

Set p = 3, cq0,13n @ |5) (Y], We will compare this to the state p' = > ¢ 1 130 @z |2)]0) (¥2]{0]
(where of course S(p’) = S(p)). We have

19— il < 2/ T= (1= 26 < 4V (17)
We will use Fannes’ inequality [f] to show that S(p¢) = S(p). Define the function

—zlogz forx <1/e
() = { 1/eloge for x > 1/e (18)

Then Fannes’ inequality gives that

S(p) = S(p) — 4v/en —logmo(4V/e) (19)

C. Communication complexity lower bounds from communication capacity

A lower bound for the communication capacity of a function f can be written down in terms of
its communication matrix M as follows. As before, set

p= D )l for[) = Y (=1 /by y) (20)

ze{0,1}" ye{0, 1}



for arbitrary probability distributions (ay), (by) on Alice and Bob’s inputs. Define the rescaled Gram
matrix G as G;j = \/a;,/a; (1;|1;). Now it is known [14] that G will have the same eigenvalues as
p, and thus the same entropy. But it can easily be verified that

G = (AMB)(AMB)' (21)

where A and B are diagonal matrices with A;; = \/a;, Bi; = v/b;. So the eigenvalues of G are simply
the singular values squared of AM B. We may thus write

S(p) = H(o*(AMB)) (22)

where 02(M) denotes the vector containing the squared singular values of a matrix M. We can
now produce lower bounds on the quantum communication complexity of f by appealing to the
result of Nayak and Salzman [19] which states that, if Alice wishes to transmit n bits to Bob over

a quantum channel with probability of success p, Alice must send m > % (n — log %) bits to Bob.

If they are not allowed to share prior entanglement, the factor of 1/2 vanishes. This immediately
gives a lower bound on the exact quantum communication complexity of f, as lower bounds on the
forward communication required for the “clean” protocols that we use translate into lower bounds
on the total amount of communication needed for any communication protocol.

In the bounded-error case, we can still use the Nayak-Salzman result. Consider a block coding
scheme with blocks of length k where each letter [¢5) is produced by one use of f, as in the previous
section. By [L1] there exists such a scheme that transmits kS (p¢) — o(k) bits of information with
k uses of f, as k — oo, and probability of success p — 1. A lower bound on the bounded-error
quantum communication complexity of f follows immediately:

mk > = (kS(p°) - olk) - o(1)), (23)

N~

hence, after taking the limit £ — oo, p — 1, we find m > %S’(pe).

In order to reduce the error probability € to O(1/n?) (to remove the additive term linear in n in
inequality ([[d)), it is sufficient to repeat the original protocol O(logn) times and take a majority
vote [16]. Alternatively, using ([[d) directly gives a better bound for functions for which S(p) is
linear in n. We thus have the following theorem.

Theorem IL.1. Let f: {0,1}" x {0,1}" — {0,1} be a total Boolean function with communication

matriz M. Then, for any non-negative diagonal matrices A and B with ||All2 = ||Bll2 = 1,
Qp(f) > H(o*(AMB)) (24)
Qb(f) > JH(GH(AMB)) (25)
Q(H(c*(AMB))/logn)
QD) = { T A1) L - s (av) 20)

) Q(H(0*(AMB))/logn)
Q:f) = { L(H(0?(AM B)) — 4\/en — logno(4,/€))

where no(x) is defined as in equation [I8).

If we use the uniform distribution on Alice and Bob’s inputs, then AM B = M/2™. In the case
of the models without entanglement, Klauck obtained this specialised result via a different method
[15]. This theorem can thus be seen as simultaneously extending Klauck’s work to the model with
entanglement, generalising it, and giving it an operational interpretation. The special case of the
uniform distribution was also used by Cleve et al. [5] to prove their lower bound on the communication
complexity of IP.



III. RENYI ENTROPIC BOUNDS ON COMMUNICATION CAPACITY

A disadvantage of the von Neumann entropy S(p) is the difficulty involved in its computation.
The second Rényi entropy Sa(p) [24] provides an easily computable lower bound on S(p). Sa(p) is
defined as

Sa(p) = —logtr(p®) = —log Z o35 |? (28)

and we have the fundamental property that Sa(p) < S(p). The Rényi entropy also obeys the
bounds 0 < S3(p) < n. As with the von Neumann entropy, the Rényi entropy is a function only
of the eigenvalues of p, so the Rényi entropy of the density matrix corresponding to an ensemble of
equiprobable states is the same as that of the rescaled Gram matrix corresponding to these states.
We can use this to write down a formula for the Rényi entropy of a density matrix p corresponding
to the communication matrix M of a function (as in the previous section, specialising to the uniform
distribution on Alice and Bob’s inputs), which gives a lower bound on its communication capacity
and thus its entanglement-assisted communication complexity.

1
Sa(p) = _1ogtr(24—n(MMT)2) (29)
2
= 4n —log Z <ZMiijk> (30)
1,7 k
= dn—log | > MyM;M;M; (31)
i,7,k,l

Rényi entropic arguments have previously been used in a different way by van Dam and Hayden [1]
to put lower bounds on quantum communication complexity.

IV. THE QUANTUM COMMUNICATION COMPLEXITY OF A RANDOM FUNCTION

In this section, we will show a lower bound on the communication capacity — and thus the quantum
communication complexity — of a random function (one which takes the value 0 or 1 on each possible
input with equal probability). Define the state p as

1
P=5y |thi) (x|, where [1hy) =
N mE

i€{0,1}n

R (32)

where a* is a randomly generated 2"-bit string, and a¥ represents the i’th bit of a*. We will show

that the Rényi entropy Sa(p) is high for almost all p.

Theorem IV.1. Pr[Sy(p) < (1 —d)n] < e— (201?72



Proof. We have

Sa(p)

dn—log [ Y (Z Miijk> (33)

2%

= 4n - log Z(Z i ) +Z<ZMZkMJk> (34)

% k i#j

= 4n —log (N® +T) (35)

where we define N =2" and T'= 3", (3, M M;i,). Tt is then clear that
Pr[S2(p) < (1 —0)n] = Pr [T > N3(N° —1)] (36)
Each term in the inner sum in 7 (the sum over k) is independent and picked uniformly at random
from {—1,1}. We will now produce a tail bound for T using “Bernstein’s trick” (see Appendix A of

[3]): from Markov’s inequality we have

Pr[T > a] < E(e*) /e < E(e’\X“)N2/e’\“ (37)
where we define X;; = (3°, mMjk) : each Xj; is independent and identically distributed, so T is

the sum of N(N — 1) < N? copies of X;;. It remains to calculate E(e*¥11). This can be written
out explicitly as follows.

E(e >\X11 _ 2Nz( ) A(N —2k)? (38)

It is then straightforward to see (using an inequality from [3]) that the following series of inequalities
holds.

1 <. (N 2 N ;
AXiy o« L AN —2K) AN —2K) AZ(N—2k)*/2
E(er*11) < 2Nz<k> (e +e ) ( ) (39)
k=0 k
N
< 1 Z( ) NNY/2 g NN2 (40)
- 2N-1 k
k=0

Inserting this in eqn (@), and minimising over A, gives
Pr[T > a] < 2¢7¢/?N° (41)

and substituting a = N3(N?® — 1) gives the required result. O

In particular, putting § = 1/2 gives that Pr[Sy(p) <n/2] < 2e~(VN=D%/2_ which is doubly
exponentially small in n. As p corresponds to the communication matrix of a random function,
Theorem [l immediately gives the result that the entanglement-assisted quantum communication
complexity of almost all functions is Q(n).

V. DISCUSSION AND OPEN PROBLEMS

We have shown that the implementation of any distributed computation between Alice and Bob
entails the ability to communicate from one user to the other. This communication capacity of a



Boolean function of two arguments is naturally a lower bound on the communication complexity
to compute that function, and we have proved corresponding lower bounds, even in the presence of
arbitrary entanglement.

These bounds show that random functions of two n-bit strings mostly have communication com-
plexity close to n. However, in general it has to be noted that our bounds are not that good: an
example is provided by the set-disjointness problem, where Alice and Bob want to determine if their
strings  and y have a position where they are both 1. It is known that the quantum communication
complexity of this function is ©(y/n) [, 23]. On the other hand, the entropy in our main theorem
was already computed for this case in [2], and it is only O(logn). Thus, not quite surprisingly, the
ability of a function to let Alice communicate to Bob is not the same as the communication cost of
implementing this computation.

Looking again at our main theorem, we are left with one interesting question: is the logarithmic
factor that we lose in the bounded error model really necessary? It appears to be a technicality,
since we need to boost the success probability to apply Fannes’ inequality, but we were unable to
determine if it is just that or if there are cases in which the lower bound is tight.
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