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We investigate the notion of quantum chromatic number of a graph, which is the minimal number
of colours necessary in a protocol in which two separated provers can convince an interrogator with
certainty that they have a colouring of the graph.

After discussing this notion from first principles, we go on to establish relations with the clique
number and orthogonal representations of the graph. We also prove several general facts about this
graph parameter and find large separations between the clique number and the quantum chromatic
number by looking at random graphs. Finally, we show that there can be no separation between
classical and quantum chromatic number if the latter is 2, nor if it is 3 in a restricted quantum
model; on the other hand, we exhibit a graph on 18 vertices and 44 edges with chromatic number
5 and quantum chromatic number 4.

I. INTRODUCTION

Alice and Bob want to convince a referee with probabil-
ity 1 that they have a c-colouring of a graph G = (V,E)
in the interrogation model: they each get asked a vertex
v, w of the graph, respectively and have to report back
a colour α, β (resp.) to the referee (i.e., a number in
[c] = {0, 1, . . . , c− 1}; if v = w, then to pass they have to
reply the same: α = β; if vw ∈ E, then to pass they have
to reply differently: α 6= β. In this paper, a graph will
always be undirected and without loops, i.e. E ⊆

(

V
2

)

.

If they are not allowed to talk to each other during
the interrogation but may agree on a strategy before-
hand, then it is straightforward to see that they can pass
with probability 1 if and only if c ≥ χ(G), the chromatic
number of G – that is, in a classical world where Alice
and Bob may share randomness and an otherwise deter-
ministic strategy. However, if Alice and Bob share an
entangled state (possibly depending on the graph), there
are graphs for which Alice and Bob can win this game
with probability 1 for c < χ(G). Based on a sugges-
tion of one of the authors (also, independently of Patrick
Hayden, see [1]) we call the smallest c such that Alice
and Bob can win the graph colouring game the quantum

chromatic number.

Such a problem was first considered in [5, 7], and gen-
eralised in [23], Theorems 8.5.1-3, and [6], for Hadamard
graphs: the vertices are n-bit strings, and two of them
are joined by an edge if and only if their Hamming dis-
tance is n/2. In these references it is shown that the game
can be won with c = n colours. This line of investigation
was carried further under the heading “pseudotelepathy”
in [1, 4, 12, 13]. Earlier work of Frankl and Rödl [11] in
extremal combinatorics established that the chromatic
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number of the Hadamard graphs grows exponentially in
n. In [20] it is shown that the chromatic number is equal
to n if and only if n ∈ {1, 2, 4, 8}.

The rest of the paper is structured as follows: in sec-
tion II we present the model, or actually an infinite hi-
erarchy of models for the quantum chromatic number.
Then we go on to general properties of the quantum chro-
matic number in section III, bounds via orthogonal rep-
resentations (section IV), small number of colours (sec-
tion V), and finally random graphs (section VI), after
which we conclude with a number of open questions and
conjectures.

II. MODEL(S)

The most general strategy for Alice and Bob to win the
graph colouring game with probability 1 with c colours
for a graph G = (V,E) consists of an entangled state
|ψ〉AB ∈ Cd×d shared between them, and two families
of POVMs (Evα)α=0,...,c−1 and (Fvβ)β=0,...,c−1, indexed
by the vertices v ∈ V of the graph. The fact that they
win with probability 1 is expressed by the consistency
condition

∀v ∈ V ∀α 6= β 〈ψ|Evα ⊗ Fvβ |ψ〉 = 0,

∀vw ∈ E ∀α 〈ψ|Evα ⊗ Fwα|ψ〉 = 0.
(1)

Note that the dimension d bears no relationship to c, that
the entangled state ψ can be anything (it may even be
mixed but it is immediate that w.l.o.g. we may assume
it to be pure), and the POVMs may have operators of
arbitrary rank.

The smallest possible c for which Alice and Bob can
convince the referee, i.e. such that eq. (1) holds, is called
the quantum chromatic number of G and it will be de-
noted by χq(G).

Proposition 1 To win the graph colouring game in the

above setting, w.l.o.g. the state is maximally entangled,

mailto:m.newman@qmul.ac.uk
mailto:ss54@york.ac.uk


2

and the POVM elements are all projectors, all w.l.o.g. of

the same rank.

Proof. Without loss of generality we can assume that
|ψ〉 has full Schmidt rank d since otherwise we restrict all
POVMs to the supports of the respective reduced states.
From eq. (1) we get, for any v ∈ V , any α and β 6= α,
that Evα ⊥ TrB

(

(11 ⊗ Fvβ)|ψ〉〈ψ|
)

, hence

Evα ⊥
∑

β 6=α

TrB

(

(11 ⊗ Fvβ)|ψ〉〈ψ|
)

= TrB

(

(11 ⊗ 11 − 11 ⊗ Fvα)|ψ〉〈ψ|
)

.

From this, and because Alice needs to get outcome α
with certainty if Bob gets α, we must have

Evα = supp TrB

(

(11 ⊗ Fvα)|ψ〉〈ψ|
)

.

By the same argument all Fvβ are projectors.
Now we argue that the consistency requirement for the

state ψ implies that it is also true when we substitute
the maximally entangled state Φd: in its Schmidt ba-
sis, |ψ〉 =

∑

i

√
λi|i〉|i〉, and denoting ρ = TrB |ψ〉〈ψ| =

∑

i λi|i〉〈i| = TrA |ψ〉〈ψ|, the finding of the previous para-
graph can be cast as

Evα = supp
√
ρ
(

Fvα

)√
ρ,

Fwβ = supp
√
ρ
(

Ewβ

)√
ρ.

This implies however

EvαρEvβ = 0

for all v and α 6= β (where we cancelled
√
ρ’s left and

right), and likewise for Fwα, Fwβ . But with the fact that
each Evα is a projector and that summed over α they
yield the identity, this gives (for arbitrary v)

ρ =
∑

α,β

EvαρEvβ =
∑

α

EvαρEvα,

from which it follows that ρ commutes with all the
(Kraus) operators Evα, and likewise Fwβ [18]. Hence
we find

Evα = Fvα, Fwβ = Ewβ ,

and that is the claim we set out to prove: we may as well
assume that |ψ〉 is maximally entangled.

Finally, how to make the operators all the same rank:
let |ψ′〉 = |ψ〉 ⊗ |Φc〉, and

E′
vα :=

c−1
∑

i=0

Ev,α+i ⊗ |i〉〈i|,

F ′
wβ :=

c−1
∑

i=0

Fw,β+i ⊗ |i〉〈i|,

where the colours are w.l.o.g. {0, . . . , c− 1} and the ad-
ditions above are modulo c. These states and operators

evidently still make for a valid quantum colouring, and
also clearly all operators have now the same rank.

This proposition motivates us to introduce rank-r ver-

sions of the quantum chromatic number: χ
(r)
q (G) is the

minimum c such that Alice and Bob can win the graph
colouring game for G with a maximally entangled state of
rank rc, and POVMs with operators of rank r (exactly).

Then it is clear that χ
(r)
q (G) ≤ χ

(s)
q (G) whenever r ≥ s,

and that χq(G) = infr{χ(r)
q (G)}.

The special case of rank-1 model is the following: Alice
and Bob share a c-dimensional maximally entangled state

|Φc〉 =
1√
c

c−1
∑

i=0

|i〉A|i〉B.

To make their choices, they both use rank-1 von Neu-
mann measurements, which are ordered bases (|evα〉)α

and (|fvβ〉)β for all vertices v, for Alice and Bob, respec-
tively.

Observation 1. Bob’s bases are tied to Alice’s by the
demand of consistency: we need, for all v and α,

〈evα|〈fvα|Φc〉 = 1/c,

which enforces

|fvα〉 = |evα〉.

Observation 2. This means that we can translate the
colouring condition into something that only concerns
Alice’s bases: we need, for all vw ∈ E and all α,

〈evα|〈fwα|Φc〉 = 0.

Because of

〈fwα|Φc〉 =
1√
c
|fwα〉

and Observation 1 this can be rewritten as

∀vw ∈ E and ∀α 〈evα|ewα〉 = 0. (2)

Observation 3. It is convenient to introduce unitary
matrices Uv for each vertex v, whose columns are just
the vectors |evα〉, α = 0, . . . , c−1. Then we can reformu-
late Alice’s strategy as follows: on receiving the request
for vertex v, she performs the unitary U †

v on her quan-
tum system and measures in the standard basis to get a
number α ∈ [c]. By Observation 1 above, Bob, for vertex

w, performs the unitary Uw
†

= U⊤
w and measures in the

standard basis to obtain β ∈ [c]. In the light of Observa-
tion 2, we can rewrite the colouring condition expressed
in eq. (2) as:

∀vw ∈ E U †
vUw has only zeroes on the diagonal. (3)

By a similar chain of arguments we can show, for the
POVM constructed in the proof of proposition 1, that
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Fvα = Evα for all vertices v and all colours α, and that
hence the colouring condition can be phrased entirely in
terms of Alice’s operators:

∀vw ∈ E and ∀α EvαEwα = 0, (4)

i.e. Evα and Ewα are orthogonal.

III. GENERAL PROPERTIES

We look at some basic properties of the quantum chro-
matic number as a graph parameter. None of these are
particularly surprising; indeed the point of this section is
to show that the quantum chromatic number “does the
right thing”, and merits being considered as a general-
ization of the (ordinary) chromatic number.

A homomorphism is a mapping from one graph to an-
other that preserves edges. That is, a homomorphism φ
from G to H maps vertices of G to vertices of H such
that if x and y are adjacent in G then φ(x) and φ(y) are
adjacent in H . We write G → H to indicate that there
exists a homomorphism from G to H .

The following easy observation is a useful tool.

Proposition 2 If G → H, then χ
(r)
q (G) ≤ χ

(r)
q (H) for

all r and hence χq(G) ≤ χq(H).

Proof. Let φ be a homomorphism from G to H . Then
any quantum colouring ofH gives a quantum colouring of
G by colouring the vertex x of G with the colour assigned
to φ(x) in H .

It is trivial to see that if (and only if) G has no edges

then χ
(r)
q (G) = χq(G) = 1. With a little more effort, one

sees that if G = Kn then χ
(r)
q (G) = χq(G) = n. For,

using proposition 1 and eq. (4), we have a set of n rank-r
pairwise orthogonal operators in a space of dimension cr.
We can say a little more.

Proposition 3 χq(G) = 2 if and only if χ(G) = 2.

Proof. If χ(G) = 2, then G→ K2 and K2 → G, and so
by proposition 2 χq(G) is at most and at least 2.

The clique number of G, denoted by ω(G) is the size
of the largest complete subgraph of G.

Proposition 4 ω(G) ≤ χq(G) ≤ χ(G) ⊓⊔

Proof. Any graph G contains Kω(G) as a subgraph,
hence Kω(G) → G. Also G → Kχ(G), by mapping each
vertex to the vertex of Kχ(G) corresponding to its colour.
The result follows by proposition 2.

Of course, propositions 3 and 4 remain valid if we re-

place χq with χ
(r)
q for any r.

Let G and H be two graphs on the same vertex set.
We define the graph G ∪H to be the graph whose edge
set is the union of the edge sets of G and H . It is a
well-known result in graph theory [21, Chap 14.1] that

χ(G ∪ H) ≤ χ(G)χ(H): colour each vertex in G ∪ H
with the ordered pair of colours it received in colourings
of G and H , respectively. This idea can be extended to
quantum colourings:

Proposition 5 For any r, s, we have χ
(rs)
q (G ∪ H) ≤

χ
(r)
q (G)χ

(s)
q (H).

Proof. Given rank-r and rank-s quantum colourings
for G and H respectively, we obtain a rank-rs quantum
colouring of G ∪H by taking the tensor products of the
individual POVM operators associated to the vertices.

As a corollary, we obtain the following, showing that a
graph and its complement cannot both have small quan-
tum chromatic number.

Proposition 6 χq(G)χq(G) ≥ n.

Proof. Apply proposition 5 with H = G, the comple-
ment of G.

IV. ORTHOGONAL REPRESENTATIONS

The origin of the quantum chromatic number is in
Hadamard graphs [5, 7], which are a special case of or-
thogonality graphs, so it is natural to consider the larger
family.

An orthogonal representation of a graph G is a map-
ping φ from the vertices of G to the non-zero vectors of
some vector space, such that if two vertices x and y are
adjacent, then φ(x) and φ(y) are orthogonal.

Given a set of vectors, we define their orthogonality

graph to be the graph having the vectors as vertices, with
two vectors adjacent if and only if they are orthogonal.

Let ξ(G) to be the smallest integer c such that G has
an orthogonal representation in the vector space Cc. Fur-
thermore, let ξ′(G) to be the smallest integer c such that
G has an orthogonal representation in the vector space
Cc with the added restriction that the entries of each vec-
tor must have modulus one. (Note that we really only
need the entries in any particular vector to have constant
modulus.)

Proposition 7 ω(G) ≤ ξ(G) ≤ χ
(1)
q (G) ≤ ξ′(G) ≤ χ(G)

Proof. For each integer c, let Fc be the discrete Fourier
transform of order c, i.e., [Fc]j,k = 1√

c
e2πijk/c.

Three of these inequalities are straightforward.
Given a graph with χ(G) = c, colour the vertices with

the rows of F . Adjacent vertices have distinct colours and
hence orthogonal vectors, and thus ξ′(G) ≤ χ(G). Given

a graph with χ
(1)
q (G) = c, map each vertex to the first

column of its corresponding unitary matrix. By eq. (2)
adjacent vertices will get mapped to orthogonal vectors,

and thus ξ(G) ≤ χ
(1)
q (G). Given a graph with ω(G) = c,

any orthogonal representation of it must contain c pair-
wise orthogonal vectors and thus ω(G) ≤ ξ(G).
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Finally, given a graph with ξ′(G) = c, map each vertex
x to ∆xFc, where ∆x is the diagonal (unitary) matrix
whose diagonal entries are the entries of x. Then 〈x|y〉 =
0 implies that (∆vFc)

†(∆wFc) has only zeroes on the

diagonal. Thus χ
(1)
q ≤ ξ′.

The proof that χ
(1)
q (G) ≤ ξ′(G) is in fact a familiar

one: it is essentially the original proof of [5, 7] using Fc

in place of a Hadamard matrix, or extension of [1] using
more general vertices.

In fact the only properties of Fc that we need are that
its columns form an orthonormal basis and the entries
all have the same modulus. So the (normalized) char-
acter table of any Abelian group of order c will do (as
will a generalized Hadamard matrix). Likewise, the only
properties of the vertices that we need are that adjacent
vertices are orthogonal and the entries all have the same
modulus, so we need not restrict ourselves to ±1-vectors.

The results of [5, 7] can be rephrased in our current
language as follows. Given a graph G, what is the small-
est integer c such that G has an orthogonal representa-
tion in Cc with the added restriction that all entries are
±1. This motivates us to consider the following question:
what happens if we replace “±1” by some other subset
of roots of unity?

Proposition 8 Let p be a prime. Let G be the graph

whose vertices are the vectors of Cp whose entries are all

p-th roots of unity. Then χ(G) = p.

Proof. We first show that G is a Cayley graph for Zn
p

(this is in fact well known). To each vertex a associate the
mapping σa : x→ a◦x, where a◦x denotes the entry-wise
product of a and x. Two vertices x and y are adjacent
when 〈x|y〉 = 0, or equivalently when y = σa(x) for some
a whose entries sum to zero. Thus the connection set is
the set of such a.

The fact that p is prime is relevant for the following
reason. Vertices x and y are adjacent if and only if the
entries of x ◦ y are all distinct: this is because the entries
are p-th roots of unity and there are p of them.

It is well-known that for vertex transitive graphs H
(such as Cayley graphs), we have α(H)ω(H) ≤ v. We
use an extension due to Godsil [15], which in our case we
may state as follows: if H is a Cayley graph on v vertices
for an Abelian group then α(H)ω(H) = v if and only if
χ(H) = ω(H).

It is easy to see that ω(G) = p: take the rows of the
character table for Zp. So it is necessary and sufficient
to find an independent set of size pp−1.

The set of vertices x with x1 = x2 form an independent
set of size pp−1: no two of them are adjacent since for any
such x and y, the first two entries of x◦y are equal, hence
the entries are not all distinct.

Note that in an orthogonality graph, vectors that dif-
fer by a scalar multiple are non-adjacent and have the
same neighbours, so we may restrict ourselves to vectors

that have first entry equal to one. (We are really deal-
ing with 1-dimensional subspaces and not vectors.) For
convenience, we use this in the next result.

Proposition 9 Let G be the orthogonality graph defined

by vectors of dimension 4 whose entries are taken from

the set {1, i,−1,−i}. Then χ(G) = 4.

Proof. We give an explicit 4-colouring of G found by
computer. Consider the set S of all 4-dimensional vectors
whose first component is 1, and whose other 3 compo-
nents are taken from the set {1, i,−1,−i}. A 4-colouring
of the orthogonality graph of S gives a 4-colouring of
G. Consider each element s ∈ S as a 3-digit string
s′ ∈ {0, 1, 2, 3}3 giving the power of i in each component
of s, and list the vertices of S in lexicographic order.
Then, a 4-colouring of the orthogonality graph of S is
given by the following:

(1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 3, 4, 1, 1, 3, 4,

4, 1, 2, 2, 4, 3, 2, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 1, 1,

4, 3, 3, 1, 2, 3, 3, 4, 2, 2, 1, 4, 4, 2).

Both the graphs of proposition 8 and proposition 9
satisfy ω = χ, and therefore by proposition 4 also have

ω = χq = χ
(r)
q = χ.

It is not hard to see directly that the orthogonality
graph on ±1-vectors of dimension 2 is 2-colourable. Thus
for orthogonality graphs using ±1-vectors, in order to
have χq < χ we need to go to dimensions larger than 2.
We now see that for d a prime or d = 4, using d-th roots
of unity vectors forces us to go to dimensions larger than
d to obtain χq < χ.

Finally, we derive an upper bound on the orthogonal-
ity graph of Ck, which gives an upper bound on χ(G)
in terms of ξ(G). This allows us to bound the largest

possible gap between χ(G) and χ
(1)
q (G).

Proposition 10 For any graph G,

χ(G) ≤ (1 + 2
√

2)2 ξ(G) ≤ (1 + 2
√

2)2χ(1)
q

(G).

Proof. To show the first inequality, we give a colouring
of the orthogonality graph on Ck, where k = ξ(G). This
can be produced from a set of unit vectors V = {|vi〉}
such that for all unit vectors |w〉 ∈ Ck, ‖|w〉 − |vi〉‖2 <

1/
√

2 for some i, by assigning colour i to |w〉 (if there
are two or more vectors in V satisfying this inequality,
picking one arbitrarily). This works because 〈w|vi〉 =
0 ⇒ 2(1 −Re(〈w|vi〉)) = ‖|w〉 − |vi〉‖2

2 = 2, so no two or-
thogonal vectors will receive the same colour. We use the
argument of [16] to bound the size of such a set (which

[16] calls a 1/
√

2-net). Let M = {|vi〉} be a maximal

set of unit vectors such that ‖|vi〉 − |vj〉‖2 ≥ 1/
√

2 for

all i and j. Then M is a 1/
√

2-net. Set m = |M |
and observe that, as subsets of R2k, the open balls of
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radius 1/(2
√

2) about each |vi〉 are disjoint and con-

tained in the overall ball of radius 1 + 1/(2
√

2). Thus

m(1/(2
√

2))2k ≤ (1+1/(2
√

2))2k. The second inequality
follows from proposition 7.

Remark. The above result shows that the separation

between χ(G) and χ
(1)
q (G) can be at most exponential;

the results of [6, 23] on the other hand demonstrate that
exponential gaps can occur, showing that this is indeed
the most extreme case, up to a constant factor in the
exponent.

V. FEW COLOURS

Here we investigate properties of graphs with small
quantum chromatic number or small orthogonal rank.
We already saw that for two colours, classical and quan-
tum chromatics numbers coincide. It turns out that for
three this is also the case, and for numbers up to 8 the
quantum chromatic number stays close to the orthogonal
rank.

Proposition 11 Given a graph G, χ
(1)
q (G) = 3 if and

only if χ(G) = 3.

Proof. If χ(G) = 3, we cannot have χq(G) = 2 (nor
1 because the graph is not empty) as this would mean
χ(G) = 2. On the other hand, consider a rank-1 quantum
colouring with 3 colours. We use the analysis in section II
and in particular the last observation 3: we can view
the quantum colouring as a family of 3 × 3-unitaries Uv

such that eq. (3). The columns of the unitaries are just
the basis vectors |ev0〉, |ev1〉, |ev2〉. W.l.o.g. the graph
is connected and for one distinguished vertex v0 we may
assume Uv0 = 11.

The crucial observation is that there are essentially
only two unitary(!) matrices U †

vUw with zeroes on the
diagonal [22]: they can only be





0 0 ∗
∗ 0 0
0 ∗ 0



 or





0 ∗ 0
0 0 ∗
∗ 0 0



 ,

where the starred entries must be roots of unity. Starting
from v0 we hence find inductively that all Uv are, up to
phase factors, permutation matrices. Just looking at the
first column, we now obtain a 3-colouring of G, choosing
the colour according to the row in which the nonzero
entry of the column vector is.

Proposition 12 Let G be a graph with an orthogonal

representation in R
c. If c = 3, 4 then χ

(1)
q (G) ≤ 4; if

4 < c ≤ 8 then χ
(1)
q (G) ≤ 8.

Proof. If c = 4, 8 then associate every vector v ∈ R4

and w ∈ R
8 to real orthogonal designs V and W of the

form OD (4; 1, . . . , 1) and OD (8; 1, . . . , 1), respectively.

For example, every vector v ∈ R4 is associated to a real-
orthogonal matrix

V =







v1 v2 v3 v4
−v2 v1 −v4 v3
−v3 v4 v1 −v2
−v4 −v3 v2 v1






.

If v ∈ Rc and c = 3 or 4 < c ≤ 8 then concatenate a
zero-vector of length 1 or 8 − c to v, respectively, and
proceed as above.

Remark. The above construction works based on the
fact that in dimensions 4 and 8 there exist division al-
gebras (Hamilton quaternions and Cayley octonions);
namely, the generating orthogonal units 1, i, j, k, . . . have
the property that multiplication by one of them turns
every vector into an orthogonal one. Unfortunately they
exist only in dimensions 1, 2, 4 and 8, cf. [10].

Example. We now give an example of a fairly small
graph G (18 vertices and 44 edges) which has quantum

chromatic number [actually even χ
(1)
q (G)] equal to 4, but

chromatic number 5. Label the vertices with integers
1 . . . 18; then

E = {(1, 2), (1, 3), (1, 11), (1, 12), (1, 16), (2, 3), (2, 4),

(2, 13), (3, 4), (3, 13), (4, 5), (4, 6), (4, 10), (4, 17),

(5, 6), (5, 7), (5, 14), (6, 7), (6, 14), (7, 8), (7, 9),

(7, 16), (8, 9), (8, 10), (8, 13), (9, 10), (9, 13), (10, 11),

(10, 12), (10, 17), (11, 12), (11, 14), (12, 14), (13, 14),

(13, 15), (13, 18), (14, 15), (14, 18), (15, 16), (15, 17),

(15, 18), (16, 17), (16, 18), (17, 18)}

The graph may be visualised as consisting of two compo-
nents connected to each other by 8 additional edges: a 4-
regular graph on vertices 1−14 [augmented by two edges
(4, 10) and (13, 14)], and a 4-clique on vertices 15 − 18,
see Fig. 1. The following list of vectors gives an orthog-
onal representation of G in R4, which by Proposition 12
gives a quantum colouring with 4 colours:

{(0, 0, 1,−1), (1, 0, 0, 0), (0, 1, 1, 1), (0, 1, 0,−1), (0, 0, 1, 0),

(1, 1, 0, 1), (1,−1, 0, 0), (0, 0, 0, 1), (1, 1, 1, 0), (1, 0,−1, 0),

(0, 1, 0, 0), (1, 0, 1, 1), (0, 1,−1, 0), (1, 0, 0,−1), (1, 1, 1, 1),

(1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}

Because G contains a 4-clique, χq(G) cannot, on the
other hand, be smaller than 4.

It may be verified as follows that G cannot be
4-coloured. Assume w.l.o.g. that vertices 15-18 are
coloured 1, 2, 3, 4 respectively. Then vertices 13 and 14
must divide colours 2 and 3 between them; and for a
valid 4-colouring, none of the triplets (1, 4, 13), (1, 10, 14),
(4, 7, 14), (7, 10, 13) may consist of 3 distinct colours. Us-
ing this, it is straightforward to try all the possible colour-
ings of vertex 7 and see that each leads to vertices 4 and
10 being assigned the same colour.
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FIG. 1: A graph G with χ
q
(G) = χ(1)

q
(G) = 4, but χ(G) = 5.

This graph is much smaller and uses fewer colours than
the previously smallest specimen exhibiting a separation
between classical and quantum chromatic numbers: in [1]
a graph on 1609 vertices is described with χ(G) ≥ 13 and
χq(G) = 12.

VI. RANDOM GRAPH PROPERTIES

Now we show, in contrast to all previous construc-
tions separating classical and quantum chromatic num-
ber, that the clique number and the quantum chromatic
number (in the rank-1 model) are generically exponen-
tially separated. We use the customary notation G(n, p)
for the family of graphs on n vertices with all edges drawn
independently with probability p.

Proposition 13 For a random graph G ∈ G(n, p), and

ǫ > 0,

ω(G) ≤ (1 + ǫ)
2 logn

log 1/p
,

χ(1)
q (G) ≥ (1 − ǫ)c(p)

√
n,

almost surely, with some constant c(p) depending on p.

Proof. The statement on the clique number is Bollobás’
classic result [3] (we actually use a slightly weaker ver-
sion).

The statement on χ
(1)
q (G) follows from that quantity

being lower bounded by ξ(G), which is lower bounded by
the Lovász theta function [19] of the complement graph
G, whose random graph behaviour has been worked out
by Juhasz [17].

Remark. From proposition 5 we know that for any
graph G, χq(G)χq(G) ≥ χq(Kn) = n, hence at least

one of G and G has quantum chromatic number ≥ √
n.

Assume that G ∈ G(n, 1/2); then also G ∈ G(n, 1/2)
and both G and G are likely to have clique number only
2 logn+ o(log n). That means that we get an abundance
of graphs for which the quantum chromatic number is
exponentially larger than the clique number; asymptot-
ically at least half of all graphs have this property. It

would be interesting to see if the gap between ω(G) and
χq(G) cannot be larger than exponential, in extension of
proposition 10.

VII. CONCLUSIONS & CONJECTURES

We have studied the quantum chromatic number, the
minimal number of colours required for two independent
provers to win the graph colouring game if they are al-
lowed entanglement, from first principles, and as a gen-
eral graph property, beyond the immediate interest of
quantum advantage exhibited in pseudo-telepathy.

We discovered a number of relations of this graph
quantity to other, known, quantities such as chromatic
number, clique number, orthogonal representations and
the Lovász theta. We also found several separations be-
tween the quantum chromatic numbers and these quanti-
ties, but had to leave open a number of important ques-
tions.

One of them is the fundamental one: whether the
graph colouring game can always be won with minimal
c and a rank-1 measurement, in other words, whether

χ
(1)
q (G) = χq(G) for all graphs G. This has bearing on

the decidability of the quantum chromatic number: the

problem if χ
(r)
q (G) ≤ c is decidable because it boils down

to solving the set of quadratic equations (1) over the re-
als in a space of dimension cr, for which there exist exact
algorithms based on extensions of the Gröbner basis tech-

nique [2]. However, χq(G) = infr χ
(r)
q (G) is not decidable

in such an easy way. It should be possible to prove at
least an upper bound on r that is sufficient to attain the
limit. In that case, it would make sense to ask about the
complexity of computing χq(G), in particular whether it
is NP-hard, as is computing the chromatic number χ(G).

Similarly, we found an exponential upper bound on

χ(G) in terms of χ
(1)
q (G), but not in terms of χq(G). In

particular, it is still open whether there exists an (infi-
nite) graph G with χ(G) = ∞ and finite χq(G).

Related to the question of whether χ
(1)
q (G) = χq(G)

is the question of separating ξ(G) and ξ′(G). If in fact
these two parameters are equal for all graphs, then the
rank-1 quantum chromatic number is exactly the mini-
mum dimension for which the graph has an orthogonal
representation.

An interesting question arises in the random graph set-
ting: what is the likely quantum chromatic number of
G ∈ G(n, p)? Conjecture: random graphs have χ(G) =

χq(G) almost surely. Recalling that χ(G) ∼ n log 1
1−p

2 log n

with high probability [3], it may be possible to show

by an easier approach that for all ǫ > 0, χ
(1)
q (G) ≥

(1− ǫ)n log 1
1−p

2 log n almost surely. Namely, one would have to

show that the consistency equations (2) have, with high

probability, no solution for c =
⌊

(1 − ǫ)
n log 1

1−p

2 log n

⌋

colours.

Finally, an easier but still fascinating problem would
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be to find the smallest graph (and the smallest number
of colours) exhibiting a separation between classical and
quantum chromatic number. The graph G shown in Fig-

ure 1 has χ
(1)
q (G) = 4 and χ(G) = 5. By proposition 11,

this is the minimum value of χ
(1)
q that can achieve such

a separation. However, a graph showing a separation
with a smaller number of vertices might exist, as might
a graph with χq(G) = 3, χ(G) > 3.
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