
BCCS: Computational methods for complex systems Wednesday, 9 June 2010

Lecture 2

Lecturer: Ashley Montanaro1 Computational complexity (2)

1 Overview

In this lecture, we move on to the study of intractability, and in particular NP-completeness, perhaps
the most important concept in computer science.

2 The complexity class NP

NP (“non-deterministic polynomial time”; not “non-polynomial time”) is the class of decision
problems that have certificates which can be verified efficiently.

Let L be a language, and let M be a Turing machine that takes as input a pair of words (x, c). We
say that M is a verifier for L if:

• For all x ∈ L, there exists a c such that M halts in the Accept state on input (x, c);

• For all x /∈ L, then for all c, M halts in the Reject state on input (x, c).

We say that c is a certificate for L.

M is a polynomial-time verifier for L if it runs in time polynomial in the length of x (not c!).

Definition 1. NP is the set of all languages L that have a polynomial-time verifier.

Intuitively:

• P is the class of problems that can be solved efficiently;

• NP is the class of problems whose solutions can be checked efficiently.

It’s obvious that P ⊆ NP. The most important open problem in computer science is to determine
whether this inclusion is strict (this is the famous “P versus NP” problem). As well as having
an untold number of practical applications, solving this would win you $1 million from the Clay
Mathematics Institute2. More importantly, this is a question which is at the heart of understanding
mathematical thought itself. It is conjectured that the classes are different – informally this would
mean “there are problems which are easier to check than to solve”. However, there are many
obstacles to resolving this conjecture.

1http://www.cs.bris.ac.uk/~montanar/
2http://www.claymath.org/millennium/P_vs_NP/

1

http://www.cs.bris.ac.uk/~montanar/
http://www.claymath.org/millennium/P_vs_NP/

2.1 Examples

All of the example problems from the last lecture are of course in NP. Some additional problems
which are in NP (and not known to be in P) are:

• Factoring: given an integer x, and an integer c, does x have a prime factor smaller than c?

• Boolean Satisfiability (SAT): given a boolean formula in Conjunctive Normal Form
(CNF), is the formula satisfiable?

This second problem is quite fundamental. Here are some definitions to make it make sense.

• A boolean variable x takes values 0 or 1 (false or true).

• Boolean operations AND (x1 ∧ x2), OR (x1 ∨ x2), and NOT (¬x) are defined as you might
expect: x1 ∧ x2 = 1 if and only if x1 = x2 = 1; x1 ∨ x2 = 1 if either x1, x2 or both are 1;
¬x = 1− x.

• A boolean formula is an expression containing boolean variables and operations, such as
φ(x1, x2, x3) = x1 ∧ ((¬x2 ∨ x3) ∧ ¬x3).

• A boolean formula is in Conjunctive Normal Form (CNF) if it is written as c1 ∧ c2 ∧ · · · ∧ cn,
where each ci is a clause which contains only ORs and negations (e.g. the formula

φ(x1, x2, x3, x4) = (x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x1)

is in CNF).

• A boolean formula is satisfiable if there is an assignment to the variables that makes it evaluate
to True. For example, the previous formula is satisfiable (e.g. set x1 = 1, x2 = 0, x3 = 1, x4 =
0).

Why is SAT in NP? If we are given an assignment to the variables which is claimed to make
some formula φ evaluate to true, we can just plug it in and check. However, it is not clear how to
(efficiently) find an assignment that makes φ true. If n is the number of variables used in φ, we can
test every possible true/false assignment to the variables in O(2n) time, so we have SAT ∈ EXP.
In fact, it holds that NP ⊆ EXP (easy proof omitted). The fastest known algorithms for SAT are
not much better than this trivial algorithm, and run in time 2O(n).

3 NP-completeness

We say that a language A is NP-complete if:

• A ∈ NP, and

• For all B ∈ NP, B ≤P A.

2

That is, every problem in NP reduces to A, or in other words deciding membership in A is “as
hard as” the hardest problem in NP. This would imply that it is very unlikely that there exists
a polynomial-time algorithm for A, because if this were true, there would be a polynomial-time
algorithm for every problem in NP, and we would have P = NP.

It is not obvious that there should exist any NP-complete problems, let alone any “natural” ones.
The remarkable fact that there do is called the Cook-Levin theorem.

Theorem 2 (Cook-Levin theorem). SAT is NP-complete.

In order to prove this theorem, we will need to understand another, equivalent, definition of the
class NP, as the class of languages recognised by a nondeterministic Turing machine.

4 Nondeterministic Turing machines

A standard deterministic Turing machine consists of a configuration (h, t) comprising a head state
h and a tape state t, and a transition rule (h, t) 7→ (h′, t′, d), where d is “left” or “right” and h′,
t′ are the new head and tape states, respectively. Nondeterministic Turing machines (NDTMs)
have the property that, instead of having one transition rule, they may have several – (h, t) 7→
{(h′1, t′1, d1), (h′2, t

′
2, d2), . . . , (h′k, t

′
k, dk)}. We think of the machine as making all of these transitions

in parallel, leading to many different potential computational paths. Note that this is an unrealistic
and non-physical model of computation!

We say that an NDTM M decides a language L if:

• All M ’s computational paths halt.

• For all w ∈ L, at least one path halts in the Accept state.

• For all w /∈ L, every path halts in the Reject state.

Theorem 3. A language L is in NP if and only if it’s decided by some polynomial-time NDTM.

Proof sketch. First, suppose L ∈ NP. Then there is a certificate c for L of size poly(n) and a verifier
V such that V accepts on input (x, c) if and only if x ∈ L. To decide L, on input x our NDTM
simply guesses c nondeterministically and runs V on (x, c).

Second, suppose M is a polynomial-time NDTM that decides L. Then, for each x ∈ L, there is
a computational path of length poly(n) leading to the Accept state, but for all x /∈ L, there is
no such path. This serves as a certificate: the verifier takes as input (x, p), where p identifies a
computational path, and just simulates the path p on input x.

5 Proof of the Cook-Levin theorem (sketch)

We already know that SAT ∈ NP. To show that SAT is in fact NP-complete, we need to show
that every language in NP reduces to SAT. What we will show is slightly stronger: that, for any

3

language L ∈ NP, given an x, we can construct (in polynomial time) a CNF formula φ such that φ
is satisfiable if and only if x ∈ L.

As L ∈ NP, there is a polynomial-time NDTM M that decides L. Given a description of M , we
will encode this as a formula φ, which will evaluate to true if and only if M has an accepting path
on x.

We associate a poly(n)×poly(n) tableau with each computational path of M , where row t contains
the configuration of M at step t of the path. Imagine that the first cell of each row contains the
head state, with the remainder containing the tape state, and let q0 be the initial head state. Then
our CNF formula is

φ = φcell ∧ φstart ∧ φmove ∧ φaccept,

where

• φcell evaluates to true if all squares in the tableau are uniquely filled;

• φstart evaluates to true if the first row is the correct starting configuration;

• φmove evaluates to true if the tableau is a valid computation path of M (according to its
transition rules);

• φaccept evaluates to true if the tableau contains an accepting state.

So there is a satisfying assignment to φ if and only if there is a tableau (i.e. computational path)
that accepts x. Somewhat more formally, introduce the boolean variable ci,j,s, which evaluates to
true if cell (i, j) contains symbol s. Then

φaccept =
∨
i,j

ci,j,Accept

φstart = c1,1,q0 ∧ c1,2,x1 ∧ c1,3,x2 ∧ · · · ∧ c1,n+1,xn

φcell =
∧
i,j

(∨
s

ci,j,s

)∧
s 6=t

(¬ci,j,s ∨ ¬ci,j,t)


The last of these encodes the constraint that every cell has a value, and no cell has two values.
For the final constraint φmove, we need to encode the validity of a computational path. The key
insight is that this can be done using the locality of Turing machines. Consider a 2× 3 “window”
(submatrix) in a tableau. If S is the number of configuration symbols used, there are only poly(S)
possible windows – a fixed, finite number. However, some of these are disallowed (“illegal”) because
they correspond to transitions which cannot take place (e.g. a head moving two positions in one
step).

The constraint that a window w is legal can be written as

φw =
∨

legal windows v

[wij = vij for all i, j].

Note that this constraint is a boolean formula with a fixed, finite number of terms, and can easily
be converted into CNF. It turns out that a tableau corresponds to a valid computational path if

4

and only if all windows are legal. Intuitively, this is because the head can only move one step at a
time, so every possible transition will occur within some window. We can therefore write

φmove =
∧

windows w

φw,

which completes the sketch of the proof.

Note that we’ve skipped some technical details here, such as needing delimiters to the left and right
of the tableau; for a more detailed account, see the references from the previous lecture.

6 Some more NP-complete problems

It turns out that many, many interesting problems are known to be NP-complete. Garey and
Johnson list over 300! The Cook-Levin theorem allows us to prove a given problem to be NP-
complete in a much more straightforward manner than was the case for SAT. Indeed, if we can
show, for some language L ∈ NP, that SAT ≤P L, then L is NP-complete. Here are a few examples
of other NP-complete problems.

• 3-SAT: the Satisfiability problem restricted to CNF formulae with 3 variables per clause.

• Hamiltonian Path: given a graph G, does it contain a path visiting each vertex exactly
once?

• Subset Sum: given a set S of n integers, is there a subset of S that sums to a “target” t?

• 3-Colouring: given a graph G, can the vertices each be assigned one of three colours, such
that adjacent vertices receive different colours?

We finish with a simple example of an NP-completeness proof.

Theorem 4. Subset Sum is NP-complete.

Proof sketch. It should be obvious that Subset Sum is in NP (the certificate is simply the subset
of S that sums to the target). To prove that it’s NP-complete, we reduce SAT to Subset Sum.
Imagine we are given a formula φ with clauses C1, . . . , Cm where each clause uses at most ` variables.
We create some (n+m)-digit numbers (in base `+ 1) that sum to a particular target t if and only
if φ is satisfiable. These numbers have one column corresponding to each variable, and one to each
clause.

• For each variable v, create two integers nvt and nvf which are both 1 in the column corre-
sponding to v. nvt also has a 1 digit in the columns corresponding to clauses that are satisfied
by v being true, and 0 digits elsewhere. nvf also has a 1 digit in the columns corresponding
to clauses that are satisfied by v being false, and 0 digits elsewhere.

• For each clause Ci containing `i variables, create `i − 1 numbers that are 1 in the column
corresponding to Ci, and 0 elsewhere.

5

• The target t has 1 digits in all the columns corresponding to variables, and a digit equal to
`i in the column corresponding to Ci.

Now, if there is a subset of integers summing to t, this must use exactly one of each of the pairs
{nvt, vvf} (corresponding to each variable being either true or false) to make the first n columns
correct. Also, each clause of φ must have been satisfied by at least one variable, or the last m
columns couldn’t be correct. Therefore, there is a satisfying assignment to φ if and only if there is
a subset of the numbers that sums to t.

6

